Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T20:59:55.669Z Has data issue: false hasContentIssue false

Influence of structure and chemistry on piezoelectric properties of lead zirconate titanate in a microelectromechanical systems power generation application

Published online by Cambridge University Press:  31 January 2011

L. M. R. Eakins
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
B. W. Olson
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
C. D. Richards
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
R. F. Richards
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
D. F. Bahr
Affiliation:
Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164–2920
Get access

Abstract

Lead zirconate titanate (PZT) films between 1 and 3 μm thick were grown using solution deposition techniques to study the effects of crystal structure and orientation on the direct piezoelectric output of these films on platinized Si membranes. By varying the chemistry of the film from Zr-rich to Ti-rich, the {100}/(111) relative intensity increased for films grown on randomly oriented Pt films. The 40:60 PZT had a tetragonal crystal structure and produced greater electrical output at a given strain than the rhombohedral film (Zr:Ti concentrations less than 50:50), while having a similar e31 constant, between 4.8 and 6.3 C/m2. Orientation and voltage output at a given strain were not strongly influenced by thickness in the ranges investigated. Defects in internal PZT/PZT crystallization interfaces were identified and include porosity on the order of tens of nm, with a corresponding depletion in Pb and accumulation of O at these interfaces. The {100} texture of rhombohedral films deposited upon (111) textured Pt films is significantly greater than the {100} texture of tetragonal films, which show both a {100} and {111} orientation on the same Pt film.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kholkin, A.L., Brooks, K.G., Taylor, D.B., Setter, N., and Safari, A. in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 623.Google Scholar
2.Cross, L.E., Jpn. J. Appl. Phys. 34, 2525 (1995).Google Scholar
3.Wakabayahi, S., Sakata, M., Goto, H., Takeuchi, M., and Yada, T., Jpn. J. Appl. Phys. 35, 5012 (1996).CrossRefGoogle Scholar
4.Xu, R., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z-L., and Hemker, K.J., J. App. Phys. 89, 1336 (2001).CrossRefGoogle Scholar
5.Baborowski, J., Ledermann, N., and Muralt, P. in Nano- and Microelectromechanical Systems (NEMS and MEMS) and Molecular Machines, edited by Ayon, A.A., Buchheit, T., LaVan, D.H., and Madou, M. (Mater. Res. Soc. Symp. Proc. 741, Warrendale, PA, 2003).Google Scholar
6.Whalen, S., Thompson, M., Bahr, D., Richards, C., and Richards, R., Sens. Actuators 104, 200 (2003).Google Scholar
7.Lee, W.I. and Lee, L.K., Mater. Res. Bull. 30, 1188 (1995).Google Scholar
8.Ea-Kim, B., Varniere, F., Hugon, M.C., Agius, B., Bisaro, R., and Olivier, J. in Ferroelectric Thin Films V, edited by Desu, S.B., Ramesh, R., Tuttle, B.A., Jones, R.E., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 433, Warrendale, PA, 1996), p. 163.Google Scholar
9.Fox, G.R. and Summerfelt, S. in Magnetic and Electronic Films- Microstructure, Texture and Application to Data Storage, edited by DeHaven, P.W., Field, D.P., Harkness, S.D. IV, Sutliff, J.A., Sepumar, J.A., Tang, L., Thomson, T., and Vaudin, M.D. (Mater. Res. Soc. Symp. Proc. 721, Warrendale, PA, 2002), p. 145.Google Scholar
10.Taylor, D.V. and Damjanovic, D., Appl. Phys. Lett. 76, 1615 (2000).CrossRefGoogle Scholar
11.Tuttle, B.A., Headley, T.J., Bunker, B.C., Schwartz, R.W., Zender, T.J., Hernandez, C.L., Goodnow, D.C., Tissot, R.J., Michael, J., and Carim, A.H., J. Mater. Res. 7, 1876 (1992).Google Scholar
12.Floquet, N., Hector, J., and Gaucher, P., J. Appl. Phys. 84, 3815 (1998).CrossRefGoogle Scholar
13.Chen, S. and Chen, I., J. Am. Ceram. Soc. 81, 97 (1998).Google Scholar
14.Polla, D.L. and Francis, L.F., Annu. Rev. Mater. Sci. 28, 563 (1998).Google Scholar
15.Fu, X., Li, J., Song, Z., and Lin, C., J. Crystal Growth 220, 86 (2000).CrossRefGoogle Scholar
16.Seifert, A., Ledermann, N., Hiboux, S., and Muralt, P. in Ferroelectric Thin Films VIII, edited by Schwartz, R.W., Summerfeit, S.R., McIntyre, P.C., Miyasaka, Y., and Wouters, D. (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 535.Google Scholar
17.Hiboux, S., Muralt, P., and Setter, N. in Ferroelectric Thin Films VIII, edited by Schwartz, R.W., Summerfeit, S.R., McIntyre, P.C., Miyasaka, Y., and Wouters, D. (Mater. Res. Soc. Symp. Proc. 596, Warrendale, PA, 2000), p. 499.Google Scholar
18.Al-Shareef, H.N., Kingon, A.I., Chen, X., and Bellur, K.R., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
19.Song, Z. and Lin, C., Appl. Surf. Sci. 158, 21 (2000).CrossRefGoogle Scholar
20.Olson, B.W., Randall, L.M., Richards, C.D., Richards, R.F., and Bahr, D.F. in Transport and Microstructural Phenomena in Oxide Electronics, edited by Ginley, D.S., Hawley, M.E., Paine, D.C., Blank, D.H., and Streiffer, S.K. (Mater. Res. Soc. Symp. Proc. 666, Warrendale, PA, 2001), p. F6.11.Google Scholar
21.Al-Shareef, H.N., Dimos, D., Tuttle, B.A., and Raymond, M.V., J. Mater. Res. 12, 347 (1997).Google Scholar
22.Eakins, L.M.R., Eakins, D.E., Richards, C.D., Norton, M.G., Richards, R.F., and Bahr, D.F. in Structure-Property Relationships of Oxide Surfaces and Interlaces II, edited by Pan, X., Alexander, K.B., Carter, C.B., Grimes, R.W., and Wood, T. (Mater. Res. Soc. Symp. Proc. 751, Warrendale, PA, 2003), p. Z3.46.1.Google Scholar
23.Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., and Warren, W.L., J. Mater. Res. 11, 2309 (1996).Google Scholar
24.Yamamoto, T., Jpn. J. Appl. Phys. 35, 5104 (1996).Google Scholar
25.Kholkin, A.L., Tagantsev, A.K., Brooks, K.G., Taylor, D.V., and Setter, N., IEEE ISAF 1, 351 (1996).Google Scholar
26.Guo, R., Cross, L.E., Park, S-E., Noheda, B., Cox, D.E., and Shirane, G., Phys. Rev. Lett. 84, 5423 (2000).CrossRefGoogle Scholar
27.Prokopalo, O.I., Sov. Phys. Solid State 21, 1768 (1979).Google Scholar
28.Matsuura, K., Takai, K., Tamura, T., Ashida, H., and Otani, S., IEICE Trans. Electron. E81–C, 528 (1998).Google Scholar
29.Du, X., Zhen, J., Belegundu, U., and Uchino, K., Appl. Phys. Lett. 72, 2421 (1998).Google Scholar
30.Dubois, M-A. and Muralt, P., Sens. Actuators 77, 106 (1999).Google Scholar
31.Masuda, Y. and Baba, A., Jpn. J. Appl. Phys. 35, 5002 (1996).Google Scholar
32.Klee, M., Eusemann, R., Waser, R., and Brand, W., J. Appl. Phys. 72, 1566 (1992).Google Scholar
33.Garg, A. and Goel, T.C., Mater. Sci. Eng. B 60, 128 (1999).Google Scholar
34.Budd, K.D., Dey, S.K., and Payne, D.A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
35.Olson, A.L., Eakins, L.M., Olson, B.W., Bahr, D.F., Richards, C.D., and Richards, R.F. in Materials for Energy Storage, Generation and Transport (Mater. Res. Soc. Symp. Proc. 730, Warrendale, PA, 2002), p. V5.19.Google Scholar
36.Hall, J.D., Apperson, N.E., Crozier, B.T., Xu, C., Richards, R.F., Bahr, D.F., and Richards, C.D., Rev. Sci. Instr. 73, 2067 (2002).CrossRefGoogle Scholar