Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T03:35:32.802Z Has data issue: false hasContentIssue false

Influence of Substrate Hardness on the Response of W–C–Co-coated Samples to Depth-sensing Indentation

Published online by Cambridge University Press:  31 January 2011

J. V. Fernandes
Affiliation:
Departamento de Engenharia Mecânica, Faculdade de Ciências e Technologia da Universidade de Coimbra, Centro de Engenharia Mecânica da Universidade de Coimbra, Pinhal de Marrocos—Polo II, 3030 Coimbra, Portugal
A. C. Trindade
Affiliation:
Escola Superior de Tecnologia, Instituto Politécnico de Viseu, 3500 Viseu, Portugal
L. F. Menezes
Affiliation:
Departamento de Engenharia Mecânica, Faculdade de Ciências e Technologia da Universidade de Coimbra, Centro de Engenharia Mecânica da Universidade de Coimbra, Pinhal de Marrocos—Polo II, 3030 Coimbra, Portugal
A. Cavaleiro
Affiliation:
Departamento de Engenharia Mecânica, Faculdade de Ciências e Technologia da Universidade de Coimbra, Centro de Engenharia Mecânica da Universidade de Coimbra, Pinhal de Marrocos—Polo II, 3030 Coimbra, Portugal
Get access

Abstract

Depth-sensing indentation tests were used to determine the hardness of amorphous W–C–Co coatings deposited on different steel and copper substrates. The hardness of the film, Hf, was chosen to be always greater than the hardness of the substrate Hs and within the range Hf/Hs = 2 to 18.5. The influence of the ratio Hf/Hs on the ratio (t/hD)C between the film thickness t and the critical value of the indentation depth (hD)C, for which the substrate starts to deform plastically, was studied. Two independent methods were used to determine (hD)C values. One utilized the differential analysis of the loading part of the indentation curve, and the other was based on the plot of (HcHs)/(HfHs) versus t/(hD), Hc being the measured hardness of the film/substrate composite at a given indentation depth (hD). A good correlation between both methods was found.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matthewson, M.J., J. Mech. Phys. Solids 29, 89 (1981).CrossRefGoogle Scholar
2.Halling, J., Thin Solid Films 108, 105 (1983).CrossRefGoogle Scholar
3.Jönsson, B. and Hogmark, S., Thin Solid Films 114, 257 (1984).CrossRefGoogle Scholar
4.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 851 (1984).Google Scholar
5.Vingsbo, O., Hogmark, S., Jönsson, B., and Ingemarsson, A., in Microindentation Techniques in Materials Science and Engineering, ASTM Spec. Tech. Publ. 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, 1985), p. 257.CrossRefGoogle Scholar
6.Lebouvier, D., Gilormini, P., and Felder, E., J. Phys. D: Appl. Phys. 18, 119 (1985).CrossRefGoogle Scholar
7.Thomas, A., Surf. Eng. 3, 117 (1987).CrossRefGoogle Scholar
8.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 41 (1987).CrossRefGoogle Scholar
9.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 148, 51 (1987).CrossRefGoogle Scholar
10.Burnett, P.J. and Rickerby, D.S., Surf. Eng. 3, 69 (1987).CrossRefGoogle Scholar
11.Rickerby, D.S. and Burnett, P.J., Thin Solid Films 148, 195 (1988).CrossRefGoogle Scholar
12.Lebouvier, D., Gilormini, P., and Felder, E., Thin Solid Films 172, 227 (1989).CrossRefGoogle Scholar
13.Bull, S.J. and Rickerby, D. S., Surf. Coat. Technol. 42, 149 (1990).CrossRefGoogle Scholar
14.Manika, J. and Maniks, J., Thin Solid Films 208, 223 (1992).CrossRefGoogle Scholar
15.Ford, I.J., Thin Solid Films, 245, 122 (1994).CrossRefGoogle Scholar
16.Witlling, M., Bendavid, A., Martin, P.J., and Swain, M.V., Thin Solid Films 2270, 283 (1994).Google Scholar
17.Chicot, D. and Lesage, J., Thin Solid Films 254, 123 (1995).CrossRefGoogle Scholar
18.Chechenin, N.G., Bøtigger, J., and Krog, J.P., Thin Solid Films 261, 219 (1995).CrossRefGoogle Scholar
19.Korsunsky, A.M., McGurk, M.R., Bull, S.J., and Page, T.F., Surf. Coat. Technol. 99, 171 (1998).CrossRefGoogle Scholar
20.Fernandes, J.V., Menezes, L.F., and Trindade, A.C., Thin Solid Films 335, 153 (1998).CrossRefGoogle Scholar
21.Cavaleiro, A., Vieira, M.T., and Lemperière, G., Thin Solid Films 197, 237 (1991).CrossRefGoogle Scholar
22.Cavaleiro, A. and Vieira, M.T., Surf. Eng. 10, 147 (1994).CrossRefGoogle Scholar
23.Trindade, A.C., Cavaleiro, A., and Fernandes, J.V., J. Test. Eval. 22, 365 (1994).CrossRefGoogle Scholar
24.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
25.Loubet, J.L., Georges, J.M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, ASTM Spec. Tech. Publ. 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, 1985), p. 72.CrossRefGoogle Scholar
26.Doerner, M.F. and Nix, W.D., J. Mater Res. 1, 601 (1986).CrossRefGoogle Scholar
27.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
28.Hendrix, B.C., J. Mater. Res. 10, 255 (1995).CrossRefGoogle Scholar
29.Bückle, H., in The Science of Hardness Testing and its Research Applications, edited by Westbrook, J.H. and Conrad, H. (American Society for Metals, Metals Park, OH, 1973), p. 453.Google Scholar
30.Feldman, C., Ordway, F., and Bernstein, J., J. Vac. Sci. Technol. A8, 117 (1990).CrossRefGoogle Scholar
31.Rother, B. and Dietrich, D.A., Phys. Status Solidi (A), 142, 389 (1994).CrossRefGoogle Scholar
32.Rother, B. and Dietrich, D.A., Thin Solid Films 250, 181 (1994).CrossRefGoogle Scholar
33.Science of Hard Materials, edited by E.A. Almond, in R.K. Viswanadham, D.J. Rowcliffe, and J. Gurland (Plenum Press, New York, 1983), p. 517.Google Scholar
34.Elsevier Materials Selector, edited by N.A. Waterman and M.F. Ashby (Elsevier Science Publishers Ltd., London, 1991), Vol. 2, pp. 14381439.Google Scholar