Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T02:00:36.389Z Has data issue: false hasContentIssue false

Influence of the electrokinetic behaviors of abrasive ceria particles and the deposited plasma-enhanced tetraethylorthosilicate and chemically vapor deposited Si3N4 films in an aqueous medium on chemical mechanical planarization for shallow trench isolation

Published online by Cambridge University Press:  31 January 2011

Sang-Kyun Kim
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133–791, Korea
Sangkyu Lee
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133–791, Korea
Ungyu Paik*
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133–791, Korea
Takeo Katoh
Affiliation:
Nano Silicon on Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133–791, Korea
Jea-Gun Park
Affiliation:
Nano Silicon on Insulator (SOI) Process Laboratory, Hanyang University, Seoul 133–791, Korea
*
a) Address all correspondence to this author. e-mail: upaik@hanyang.ac.kr
Get access

Abstract

The effects of the electrokinetic behavior of abrasive ceria particles suspended in an aqueous medium and the deposited plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) Si3N4 films on chemical mechanical planarization (CMP) for shallow trench isolation were investigated. The colloidal characteristics of ceria slurries, such as their stability and surface potential, in acidic, neutral, and alkaline suspensions were examined to determine the correlation between the colloidal properties of ceria slurry and CMP performance. The surface potentials of the ceria particles and the PETEOS and CVD Si3N4 films in an aqueous suspending medium were dependent on the pH of the suspending medium. The differences in surface charges of ceria particles and the PETEOS and CVD Si3N4 films have a profound effect on the removal rate and oxide-to-nitride selectivity of CMP performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Itoh, A., Imai, M., and Arimoto, Y., Jpn. J. Appl. Phys. 37, 1697 (1998).CrossRefGoogle Scholar
2.Cheng, J.Y., Lei, T.F., and Chao, T.S., Jpn. J. Appl. Phys. 36, 1319 (1997).CrossRefGoogle Scholar
3.Kim, T.W., Kim, J.G., and Om, J.C., J. Korean Phys. Soc. 35, S861 (1999).Google Scholar
4.Horiike, Y., Sakaue, H., and Shingubara, S., J. Kor. Phys. Soc. 26, S75 (1993).Google Scholar
5.Park, H.S., Kim, K.B., Hong, C.K., Chung, U.I., and Lee, M.Y., Jpn. J. Appl. Phys. 37, 5849 (1998).CrossRefGoogle Scholar
6.Moinpour, M., Tregub, A., Oehler, A., and Cadien, K., J. Mater. Res. Bull. 27, 766 (2002).CrossRefGoogle Scholar
7.Singh, R.K., Lee, S-M., Choi, K.S., Basim, G.B., Choi, W., Chen, Z., and Moudgil, B.M., J. Mater. Res. Bull. 27, 762 (2002).Google Scholar
8.Nojo, H., Kodera, M., and Nakata, R., IEEE 96, 349 (1996).Google Scholar
9.Suphantharida, P. and Osseo-Asare, K., Electrochem. Soc. Proc. 1398 (2002).Google Scholar
10.Homma, Y., Furusawa, T., Morishimo, H., and Sato, H., Solid-State Electron. 41, 1005 (1997).CrossRefGoogle Scholar
11.Kim, J.P., Paik, U., and Park, J.G., J. Kor. Phys. Soc. 39, 197 (2000).Google Scholar
12.Laparra, O. and Weling, M., Electrochem. Soc. Proc. 98 (1998).Google Scholar
13.Cook, L.M., J. Non-Cryst. Solids 120, 152 (1990).CrossRefGoogle Scholar
14.Lee, S.H., Lu, Z., Babu, S.V., and Matijević, E., J. Mater. Res. 17, 2744 (2002).CrossRefGoogle Scholar
15.Kim, J.Y., Kim, S.K., Paik, U., Katoh, T., and Park, J.G., J. Kor. Phys. Soc. 41, 413 (2002).Google Scholar
16.Paik, U., Hackley, V.A., and Lee, H.W., J. Am. Ceram. Soc. 82, 833 (1999).CrossRefGoogle Scholar
17.O'Brien, R.W., J.Fluid Mech. 190, 71 (1988).CrossRefGoogle Scholar
18.O'Brien, R.W., Midmore, B.R., Lamb, A., and Hunter, R.J., Discuss. Faraday Soc. 90, 301 (1990).CrossRefGoogle Scholar
19.Hackley, V.A. and Paik, U., in Handbook on Ultrasonic and Dielectric Characterization Techniques for Suspended Particulates, edited by Hackley, V.A. and Texter, J. (Am. Ceram. Soc., Westerville, OH, 1998), p. 191.Google Scholar
20.Hackley, V.A., Paik, U., Kim, B.H., and Malghan, S.G., J. Am. Ceram. Soc. 80, 1781 (1997).CrossRefGoogle Scholar
21.Kim, J.P., Paik, U., Jung, Y.G., Katoh, T., and Park, J.G., Jpn. J. Appl. Phys. 41, 4509 (2002).CrossRefGoogle Scholar
22.Hackley, V.A. and Malghan, S.G., J. Mater. Sci. 29, 4420 (1994).CrossRefGoogle Scholar
23.Bohmer, M.R., Evers, O.A., and Scheutjens, J.M.H.M., Macromolecules 23, 2288 (1990).CrossRefGoogle Scholar
24.Scheutjens, J.M.H.M. and Fleer, G.J., J. Phys. Chem. 83, 1619 (1979).CrossRefGoogle Scholar
25.Bjelopavlic, M., El-Shall, H., and Moudgil, B.M., in Polymers in Particulated Systems, edited by Hackley, V.A., Somasundaran, P., and Lewis, J.A. (Marcel Dekker, New York, 2002), p. 105.Google Scholar
26.Khadilkar, C., PhD Thesis, University of Florida, 1988, pp. 541.Google Scholar
27.Myers, D., Surface, Interface, and Colloids Principles and Applications (VCH Publishers, New York, 1991), p. 286288.Google Scholar
28.Paik, U., Hackley, V.A., Choi, S.C., and Jung, Y.G., Coll. Surf. A 135, 77 (1998).CrossRefGoogle Scholar
29.Hoshino, T., Kurata, Y., Terasaki, Y., and Susa, K., J. Non-Cryst. Solids 283, 129 (2001).CrossRefGoogle Scholar
30.Mahajan, U., Belmann, M., and Singh, R.K., Electrochem. Solid- State Lett. 2(1), 46 (1999).CrossRefGoogle Scholar
31.Basim, G.B. and Boudgil, B.M., J. Colloid Interface Sci. 256, 137 (2002).CrossRefGoogle Scholar