Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T01:04:49.943Z Has data issue: false hasContentIssue false

Influence of the emulsification conditions on the microstructures and electrochemical characteristics of spinel lithium manganese oxide powders

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu*
Affiliation:
Department of Chemical Engineering, Electronic and Electro-optical Ceramics Lab, National Taiwan University, Taipei, Taiwan, Republic of China
Yueh Lin
Affiliation:
Department of Chemical Engineering, Electronic and Electro-optical Ceramics Lab, National Taiwan University, Taipei, Taiwan, Republic of China
*
a)Address all correspondence to this author.
Get access

Abstract

Lithium manganese oxide powders (LiMn2O4) with a spinel structure were synthesized via an optimized water-in-oil emulsion process. The influence of the emulsification conditions on the microstructures and physicochemical properties of LiMn2O4 powders was investigated. The phase purity of the synthesized powders significantly depends on the water-to-oil volume ratio in the emulsion. Increasing the water-to-oil ratio tends to decrease the stability of the emulsion that in turn leads to a segregation of water and oil phases. The unstable emulsion system results in the formation of an impure phase—Li2MnO3—that markedly decreases the charge and discharge capacities of the cathode materials. When water/oil volume ratio equals 1/5 or 1/10, monophasic spinel powders are formed at temperatures as low as 400 °C. In addition, decreasing the concentration of the aqueous phase substantially reduces the particle size of LiMn2O4 powders. Nanometered-LiMn2O4 powders with a particle size of 50 nm are obtained when the concentration of the aqueous phase is 1.0 M and the water-to-oil volume ratio is 1/5. Decreasing the particle size of LiMn2O4 powders was demonstrated to effectively increase the specific capacity and improve the cyclability of LiMn2O4 powders.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thackeray, M.M., Johnson, P.J., Picciotto, L.A. de, Bruce, P.G., and Goodenough, J.B., Mater. Res. Bull. 19, 179 (1984).Google Scholar
2.Tarascon, J.M. and Guyomard, D., J. Electrochem. Soc., 138, 2864 (1991).CrossRefGoogle Scholar
3.Thackeray, M.M., Prog. Solid State Chem. 25, 1 (1997).CrossRefGoogle Scholar
4.Tarascon, J.M. and Guyomard, D., Electrochim. Acta. 18, 1221 (1993).CrossRefGoogle Scholar
5.Lee, Y.S. and Yoshio, M., Electrochem. Solid-State Lett. 4, A85 (2001).CrossRefGoogle Scholar
6.Choi, H.J., Lee, K.M., Kim, G.H., and Lee, J.G., J. Am. Ceram. Soc. 84, 242 (2001).CrossRefGoogle Scholar
7.Liu, Z.L., Wang, H.B., Fang, L., Lee, J.Y., and Gan, L.M., J. Power Sources, 104, 101 (2002).CrossRefGoogle Scholar
8.Hwang, B.J., Santhanam, R., Huang, C.P., Tsai, Y.W., and Lee, J.F., J. Electrochem. Soc. 149, A694 (2002).CrossRefGoogle Scholar
9.Kurimoto, H., Suzuoka, K., Murakami, T., Xia, Y., Nakamura, H., and Yoshio, M., J. Electrochem. Soc. 142, 2156 (1995).CrossRefGoogle Scholar
10.Tarascon, J.M., Coowar, F., Amatuci, G., Shokoohi, F.K., and Guyomard, D., J. Power Source, 54, 103 (1995).CrossRefGoogle Scholar
11.Gummow, R.J., Kock, A. de, and Thackeray, M.M., Solid State Ionics, 69, 59 (1994).CrossRefGoogle Scholar
12.Gao, Y. and Dahn, J.R., J. Electrochem. Soc. 143, 100 (1996).CrossRefGoogle Scholar
13.Ohzuku, T., Kitagawa, M., and Taketsugu, H., J. Electrochem. Soc. 137, 769 (1990).CrossRefGoogle Scholar
14.Guyomard, D. and Tarascon, J.M., J. Electrochem. Soc. 139, 937 (1992).CrossRefGoogle Scholar
15.Barboux, P., Tarascon, J.M., and Shokoohi, F.K., J. Solid State Chem. 94, 185 (1991).Google Scholar
16.Qiu, X.P., Sun, X.G., Shen, W.C., and Chen, N.P., Solid State Ionics, 93, 335 (1997).CrossRefGoogle Scholar
17.Liu, W., Farrington, G.C., Chaput, F., and Dunn, B., J. Electrochem. Soc. 143, 879 (1996).CrossRefGoogle Scholar
18.Kweon, H.J., Kim, S.S., Kim, G.B., and Park, D.G., J. Mater. Sci. Lett. 17, 1697 (1998).CrossRefGoogle Scholar
19.Ikuhara, Y.H., Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 14, 3102 (1999).CrossRefGoogle Scholar
20.T. Le Mercier, Gaubicher, J., Bermejo, E., Chabre, Y., and Quarton, M., J. Mater. Chem. 9, 567 (1999).Google Scholar
21.Hwang, K.T., Urm, W.S., Lee, H.S., Song, J.K., and Chung, K.W., J. Power Sources, 74, 169 (1998).CrossRefGoogle Scholar
22.Myung, S.T. and Chung, H.T., J. Power Sources, 84, 32 (1999).CrossRefGoogle Scholar
23.Moriya, Y., Nishiguchi, N., Kawakami, M., and Hino, R., J. Ceram. Soc. Jpn. 103, 570 (1995).Google Scholar
24.Liu, X.Y., Wang, J., Gan, L.N., Ng, S.C., and Ding, J., J. Magn. Magn. Mater. 184, 344 (1998).CrossRefGoogle Scholar
25.Arcoleo, V., Goffredi, M., Longo, A., and Liveri, V.T., Mater. Sci. Eng. C 6, 7 (1998).Google Scholar
26.Lu, C.H. and Lee, W.C., Mater. Lett. 40, 103 (1999).CrossRefGoogle Scholar
27.Lu, C.H. and Yeh, P.Y., J. Mater. Chem. 10, 599 (2000).CrossRefGoogle Scholar
28.Lu, C.H. and Saha, S.K., J. Am. Ceram. Soc. 83, 1320 (2000).CrossRefGoogle Scholar
29.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954).Google Scholar
30.Powder Diffraction File No. 35–782 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA).Google Scholar
31.Sun, Y.K., Oh, I.H., and Kim, K.Y., Ind. Eng. Chem. Res. 36, 4839 (1997).CrossRefGoogle Scholar
32.Barboux, P., Tarascon, J.M., and Shokoohi, F.K., J. Solid State Chem. 94, 185 (1991).CrossRefGoogle Scholar
33.Liu, W., Kowal, K., and Farrington, G.C., J. Electrochem. Soc. 143, 3590 (1996).CrossRefGoogle Scholar
34.Xia, Y., Sakai, T., Fujieda, T., Yang, X.Q., Sun, X., Ma, Z.F., McBreen, J., and Yoshio, M., J. Electrochem. Soc. 148, A723 (2001).Google Scholar
35.Lee, M.H., Tai, C.Y., and Lu, C.H., J. Euro. Ceram. Soc. 19, 2593 (1999).CrossRefGoogle Scholar