Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T17:32:39.326Z Has data issue: false hasContentIssue false

Infrared absorption spectroscopy of hydrogen and deuterium in CaO and SrO crystals

Published online by Cambridge University Press:  31 January 2011

J. L. Park
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 and Department of Physics and Department of Materials Science and Engineering. North Carolina State University, Raleigh, North Carolina 27695
R. González
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

Infrared absorption spectra have been used to characterize OH and OD ions at the surface and the bulk of undoped CaO, lithium doped CaO, and SrO crystals. Diffusion of deuterons from D2O vapor into these crystals was performed at elevated temperatures. Diffusion coefficients were obtained to be D (CaO) = 3 ⊠ 10−6 cm2/sec at 1773 K and D (SrO) = 4 ⊠ 10−7 cm2/sec at 1523 K. For the doped CaO crystal with lithium concentration of 310 ppm, the diffusion coefficient was measured to be D (CaO:Li) = 4 ⊠ 10−7 cm2/sec at 1473 K and the activation energy in the Arrhenius equation was estimated to be 1.7 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Glass, A. M. and Searle, T. M., J. Chem. Phys. 46, 2092 (1967).CrossRefGoogle Scholar
2Henderson, B. and Sibley, W. A., J. Chem. Phys. 55, 1276 (1971).CrossRefGoogle Scholar
3Ford, J. W. De and Johnson, O.W., J. Appl. Phys. 44, 3001 (1973).CrossRefGoogle Scholar
4Johnson, O. W., Ford, J. W. De, and Shaner, J. W., J. Appl. Phys. 44, 3008 (1973).CrossRefGoogle Scholar
5Briggs, A., Ph.D. Thesis, University of Bradford, 1970 (unpublished); A. Briggs, J. Mater. Sci. 10, 729 (1975).Google Scholar
6Bates, J.B. and Perkins, R. A., Phys. Rev. B 16, 3713 (1977).CrossRefGoogle Scholar
7Gonzalez, R., Chen, Y., and Tsang, K. L., Phys. Rev. B 26, 4637 (1982).CrossRefGoogle Scholar
8Gonzalez, R., Chen, Y., Tsang, K. L., and Summers, G. P., Appl. Phys. Lett. 41, 739 (1982).CrossRefGoogle Scholar
9Gonzalez, R., Abraham, M. M., Boatner, L. A., and Chen, Y., J. Chem. Phys. 78, 660 (1983).CrossRefGoogle Scholar
10Gonzalez, R., Chen, Y., and Tsang, K. L., J. Am. Ceram. Soc. 67, 775 (1984).CrossRefGoogle Scholar
11Chen, Y., Gonzalez, R., Schow, O. E., and Summers, G. P., Phys. Rev. B 27, 1276 (1983).CrossRefGoogle Scholar
12Chen, Y. and Gonzalez, R., Opt. Lett. 10, 276 (1985).CrossRefGoogle Scholar
13Abraham, M. M., Butler, C. T., and Chen, Y., J. Chem. Phys. 55, 3752 (1971).CrossRefGoogle Scholar
14Chen, Y., Trueblood, D. L., Schow, O. E., and Tohver, H. T., J. Phys. C 3, 2501 (1970).CrossRefGoogle Scholar
15Gonzalez, R., Chen, Y., and Mostoller, Mark, Phys. Rev. B 24, 6862 (1981).CrossRefGoogle Scholar
16Crank, J., The Mathematics of Diffusion (Clarendon, Oxford, 1956).Google Scholar
17Sonder, E., Stratton, T. G., and Weeks, R. A., J. Chem. Phys. 70, 4603 (1979).CrossRefGoogle Scholar
18Damask, A. C. and Dienes, G. J., Point Defects in Metals (Gordon and Breach, New York, 1963).Google Scholar