Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:09:22.946Z Has data issue: false hasContentIssue false

Infrared reflectivity and intrinsic dielectric behavior of RETiTaO6 (RE = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) microwave ceramics

Published online by Cambridge University Press:  03 March 2011

C.W.A. Paschoal
Affiliation:
Departamento de Física–Centro de Ciências Exatas e da Terra-Universidade Federal do Maranhão, Campus do Bacanga, São Luís (Maranhão), 65085-580 Brazil
R.L. Moreira*
Affiliation:
Departamento de Física–Instituto de Ciências Exatas-Universidade Federal de Minas Gerais, Belo Horizonte (Minas Gerais), 30161-970 Brazil
K.P. Surendran
Affiliation:
Ceramics Technology Division, Regional Research Laboratory, Trivandrum, 695 019 India
M.T. Sebastian
Affiliation:
Ceramics Technology Division, Regional Research Laboratory, Trivandrum, 695 019 India
*
a)Address all correspondence to this author. e-mail: bmoreira@fisica.ufmg.br
Get access

Abstract

In this work, we performed infrared reflectivity measurements of RETiTaO6 dielectric ceramics for rare-earth (RE) = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb. The infrared spectra were analyzed through the four-parameter semi-quantum model based on two orthorhombic (aeschynite and euxenite) structures presented by the ceramics. We discerned the strongest phonon modes that contribute to the intrinsic dielectric behavior of the two families. Then the unloaded quality factors and the dielectric permittivities were estimated at the microwave region. The variations of the intrinsic dielectric response of both systems with RE ion substitution are discussed in terms of changes in their dielectric polarizabilities. It is proposed that the covalency of the RE–O bonds play an important role in the evolution of dielectric permittivity as well as in the sign of the temperature coefficient of the resonant frequency.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Masse, D.J., Pucel, R.A., Readey, D.W., Maguire, E.A. and Hartwig, C.P.: New low-loss high-κ temperature-compensated dielectric for microwave applications. Proc. IEEE 59, 1628 (1971).CrossRefGoogle Scholar
2.Plourde, J.K., Linn, D.F., O’Bryan, H.M. and Thomas, J.: Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc. 58, 418 (1975).CrossRefGoogle Scholar
3.Christoffersen, R., Davies, P.K., Wei, X.H. and Negas, T.: Effect of Sn substitution on cation ordering in (Zr1−xSnx)TiO4 microwave dielectric ceramics. J. Am. Ceram. Soc. 77, 1441 (1994).CrossRefGoogle Scholar
4.Sebastian, M.T.: New low loss microwave dielectric ceramics in the BaO–TiO2–Nb2O5/Ta2O5 system. J. Mater. Sci. Mater. Electron. 10, 475 (1999).CrossRefGoogle Scholar
5.Laffez, P., Desgardin, G. and Raveau, B.: Influence of calcination, sintering and composition upon microwave properties of the Ba6−xSm8+2x /3Ti18O54-type oxide. J. Mater. Sci. 27, 5229 (1992).CrossRefGoogle Scholar
6.Hughes, H., Iddles, D.M. and Reaney, I.M.: Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl. Phys. Lett. 79, 2952 (2001).CrossRefGoogle Scholar
7.Cava, R.J.: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).CrossRefGoogle Scholar
8.Davies, P.K.: Cation ordering in complex oxides. Curr. Opin. Solid State Mater. Sci. 4, 467 (1999).CrossRefGoogle Scholar
9.Siny, I.G., Tao, R., Katiyar, R.S., Guo, R. and Bhalla, A.S.: Raman spectroscopy of Mg-Ta order-disorder in Ba(Mg1/3Ta2/3)O3. J. Phys. Chem. Solids 59, 181 (1998).CrossRefGoogle Scholar
10.Burton, B.P.: Why Pb(B1/3B′2/3)O3 perovskites disorder more easily than Ba(B1/3B′2/3)O3 perovskites and the thermodynamics of 1:1-type short-range order in PMN? J. Phys. Chem. Solids. 61, 327 (2000).CrossRefGoogle Scholar
11.Moreira, R.L., Matinaga, F.M. and Dias, A.: Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics. Appl. Phys. Lett. 78, 428 (2001).CrossRefGoogle Scholar
12.Dias, A., Paschoal, C.W.A. and Moreira, R.L.: Infrared-spectroscopic investigations in ordered barium magnesium niobate ceramics. J. Am. Ceram. Soc. 86, 1985 (2003).CrossRefGoogle Scholar
13.Zurmuhlen, R., Petzelt, J., Kamba, S., Voitsekhovskii, V.V., Colla, E. and Setter, N.: Dielectric spectroscopy of Ba(B′1/2B″1/2)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. I. Infrared-reflectivity study (1012–1014 Hz). J. Appl. Phys. 77, 5341 (1995).CrossRefGoogle Scholar
14.Sreemoolanathan, H., Ratheesh, R., Sebastian, M.T. and Mohanan, P.: Ba(Tb1/2Nb1/2)O3: A new ceramic microwave dielectric resonator. Mater. Lett. 33, 161 (1997).CrossRefGoogle Scholar
15.Takahashi, J., Kageyama, K., Fujii, T., Yamada, T. and Kodaira, K.: Formation and microwave dielectric properties of Sr(Ga0.5Ta0.5)O3-based complex perovskites. J. Mater. Sci. Mater. Elec. 8, 79 (1997).CrossRefGoogle Scholar
16.Khalam, L.A., Sreemoolanathan, H., Ratheesh, R., Mohanan, P. and Sebastian, M.T.: Preparation, characterization and microwave dielectric properties of Ba(B′1/2Nb1/2)O3 [B′ = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb and In] ceramics. Mater. Sci. Eng. B 107, 264 (2004).CrossRefGoogle Scholar
17.Sebastian, M.T., Ratheesh, R., Sreemoolanathan, H., Solomon, S. and Mohanan, P.: Samarium titanium niobate (SmTiNbO6): A new microwave dielectric ceramic. Mater. Res. Bull. 32, 1279 (1997).CrossRefGoogle Scholar
18.Sebastian, M.T., Solomon, S., Ratheesh, R., George, J. and Mohanan, P.: Preparation, characterization, and microwave properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) dielectric ceramics. J. Am. Ceram. Soc. 84, 1487 (2001).CrossRefGoogle Scholar
19.Surendran, K.P., Solomon, S., Varma, M.R., Mohanan, P. and Sebastian, M.T.: Microwave dielectric properties of RETiTaO6 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) ceramics. J. Mater. Res. 17, 2561 (2002).CrossRefGoogle Scholar
20.Solomon, S., Kumar, M., Surendran, K.P., Sebastian, M.T. and Mohanan, P.: Synthesis, characterization and properties of [RE1−xRE′x]TiNbO6 dielectric ceramics. Mater. Chem. Phys. 67, 291 (2001).CrossRefGoogle Scholar
21.Qi, X., Illingworth, R., Gallagher, H.G., Han, T.P.J. and Henderson, B.: Potential laser gain media with the stoichiometric formula RETiNbO6. J. Cryst. Growth 160, 111 (1996).CrossRefGoogle Scholar
22.Qi, X., Han, T.P.J., Gallagher, H.G., Henderson, B., Illingworth, R. and Ruddock, I.S.: Optical spectroscopy of PrTiNbO6, NdTiNbO6, and ErTiNbO6. J. Phys. Condens. Matter 8, 4837 (1996).CrossRefGoogle Scholar
23.Qi, X.D., Han, T.P.J., Gallagher, H.G. and Henderson, B.: Energy up-conversion processes in Er3+ and Nd3+ doped RETiNbO6 crystals. Opt. Commun. 140, 65 (1997).CrossRefGoogle Scholar
24.Paschoal, C.W.A., Moreira, R.L., Fantini, C., Pimenta, M.A., Surendran, K.P. and Sebastian, M.T.: Raman scattering study of RETiTaO6 dielectric ceramics. J. Eur. Ceram. Soc. 23, 2661 (2003).CrossRefGoogle Scholar
25.Gervais, F. and Piriou, B.: Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile). Phys. Rev. B 10, 1642 (1974).CrossRefGoogle Scholar
26.Rousseau, D.L., Bauman, R.P. and Porto, S.P.S.: Normal mode determination in crystals. J. Raman Spectrosc. 10, 253 (1981).CrossRefGoogle Scholar
27.Meneses, D.D.: IRFit2.0 Adjustment Program, Orléans University, France (1999); .Google Scholar
28.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
29.Shannon, R.D.: Dielectric polarizabilities in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
30.Scott, J.F.: Raman spectra and lattice dynamics of alpha-berlinite (AlPO4). Phys. Rev. B 4, 1360 (1971).CrossRefGoogle Scholar
31.Reaney, I.M., Colla, E.L. and Setter, N.: Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984 (1994).CrossRefGoogle Scholar
32.Colla, E.L., Reaney, I.M. and Setter, N.: Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys. 74, 3414 (1993).CrossRefGoogle Scholar
33.Colla, E.L., Reaney, I.M. and Setter, N.: A microscopic model for the temperature coefficient of the resonant frequency (τf) in complex perovskites used for microwave filter. Ferroelectrics 154, 35 (1994).CrossRefGoogle Scholar
34.Wise, P.L., Reaney, I.M., Lee, W.E., Price, T.J., Iddles, D.M. and Cannel, D.S.: Structure-microwave property relations of Ca and Sr titanates. J. Eur. Ceram. Soc. 21, 2629 (2001).CrossRefGoogle Scholar