Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:18:26.023Z Has data issue: false hasContentIssue false

Infrared zone melting process for YBa2Cu3O7−δ wires

Published online by Cambridge University Press:  31 January 2011

N. Ozkan
Affiliation:
IRC in Superconductivity, University of Cambridge, West Cambridge Site, Madingley Road, Cambridge CB3 OHE, United Kingdom
B.A. Glowacki
Affiliation:
IRC in Superconductivity, University of Cambridge, West Cambridge Site, Madingley Road, Cambridge CB3 OHE, United Kingdom
E.A. Robinson
Affiliation:
IRC in Superconductivity, University of Cambridge, West Cambridge Site, Madingley Road, Cambridge CB3 OHE, United Kingdom
P.A. Freeman
Affiliation:
IRC in Superconductivity, University of Cambridge, West Cambridge Site, Madingley Road, Cambridge CB3 OHE, United Kingdom
Get access

Abstract

A novel process for the continuous densification of YBa2Cu3O7−δ wires by infrared zone melting is presented. Superconducting ceramic wires with moderate porosity (20–40%) were passed through a high temperature infrared zone at a speed of 1–2 cm/min, which resulted in zone melting followed by fast solidification to give near zero porosity wires. The atmospheric conditions during zone melting had a significant effect upon the resultant properties and microstructure of the wires. The best results were obtained for infrared zone melting under a vacuum that resulted in the decomposition of the superconducting phase into four phases without significant macroscopic chemical segregation across the wire. Subsequent conventional sintering and annealing treatment of such wires fully restored them to polycrystalline YBa2Cu3O7−δ wires having 96% of the theoretical density. The maximum transport critical current density obtained for such wires at 77 K in zero magnetic field was 2.65 × 103 A cm−2. Normalized critical current values as a function of magnetic field indicated that the quality of the intergrain connections for vacuum infrared zone melted wires was significantly better than that for conventionally processed wires and tapes.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fengsheng, L., Huilin, M., Keguang, W., Tingjie, Z., Xiaozu, W., and Lian, Z., ICMC'90 High Temperature Superconductors, Garmisch Partenkirchen, FRG, May 1990.Google Scholar
2.Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. M., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 53, 2074 (1988).CrossRefGoogle Scholar
3.Murokami, M., Morta, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
4.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
5.McGinn, P. J., Block, M. A., and Valenzuela, A., Physica C 156, 57 (1988).CrossRefGoogle Scholar
6.Rahaman, M. N., De Jonge, L. C., and Chu, M. Y., J. Am. Ceram Soc. 71, C237 (1988).Google Scholar
7.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, W., Nature 345, 326 (1990).CrossRefGoogle Scholar
8.Morris, P. A., Bagley, B. G., Tarascon, J. M., Green, L. H., and Hull, G. H., J. Am. Ceram. Soc. 71, 334 (1988).CrossRefGoogle Scholar
9.Zheng, J.P., Kim, H.S., Ying, Q.Y., Barone, R., Bush, P., Shaw, D.T., and Kwok, H. S., Appl. Phys. Lett. 55, 10 (1989).Google Scholar
10.Alford, N. McN., Birchall, J.D., Clegg, W.J., and Kendall, K., J. Appl. Phys. 65, 2856 (1989).CrossRefGoogle Scholar
11.Glowacki, B. A., and Ignatowicz, S. A., Cryogenics 27, 162 (1987).CrossRefGoogle Scholar
12.Glowacki, B. A., Ozkan, N., and Freeman, P. A., in High Temperature Superconductors, edited by Vincenzini, P. (7th CIMTEC World Ceramic Congress, High Temperature Superconductor Symposium Proc, Trieste, Italy, 1991), p. 663.Google Scholar
13.Jacob, K.T., Mathews, T., and Hajra, J.P., Mater. Sci. Res. B7, 25 (1990).Google Scholar
14.Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).CrossRefGoogle Scholar
15.Aselage, T., and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
16.Teske, C. L., and Miiller-Buschbaum, H., Z. Naturforsch. B27, 296 (1972).CrossRefGoogle Scholar
17.Wong-Ng, W., Kuchinski, M.A., McMurdie, H. F., and Paretzkin, B., Powder Diffraction 4, 2 (1989).CrossRefGoogle Scholar
18.Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C., and Dragoo, A., Powder Diffraction 2, 258 (1987).Google Scholar
19.Roth, R.S., Rawn, C.J., Beech, F., Whitler, J.D., and Anderson, J.O., in Ceramic Superconductors, edited by Yan, Man. F. (The American Ceramic Society Inc., Westerville, OH, 1988).Google Scholar
20.Borowiec, K. and Kobrecka, , Jpn. J. Appl. Phys. 28, L1963 (1989).CrossRefGoogle Scholar
21.Freeman, P. A., and Glowacki, B. A., in High Temperature Superconductors, edited by Vincenzini, P. (7th CIMTEC World Ceramic Congress, High Temperature Superconductor Symposium Proc, Trieste, Italy, 1991), p. 915.Google Scholar
22.Glowacki, B.A., and Evetts, J.E., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 741.Google Scholar
23.Evetts, J.E., and Glowacki, B.A., Cryogenics 28, 641 (1988).CrossRefGoogle Scholar
24.Evetts, J.E., Glowacki, B.A., Sampson, P.L., Blamire, M.G., McN.Alford, N., and Harmer, M.A., IEEE Trans. Mag. 25, 2041 (1989).CrossRefGoogle Scholar
25.Holcomb, D.J., and Mayo, M.J., J. Mater. Res. 5, 1827 (1990).CrossRefGoogle Scholar
26.Tkaczyk, J.E., and Lay, K.W., J. Mater. Res. 5, 1368 (1990).CrossRefGoogle Scholar