Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T16:07:04.928Z Has data issue: false hasContentIssue false

Ink-jet-printed (ZnO)1−x(TiO2)x composite films for solar cell applications

Published online by Cambridge University Press:  15 October 2012

E. Girgis
Affiliation:
Department of Solid State Physics, Advanced Materials and Nanotechnology Group, National Research Center, 12322 Giza, Cairo, Egypt
Mei Fang*
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, 10044 Stockholm, Sweden
E. Hassan
Affiliation:
Solar Energy Department, National Research Center, 12322 Giza, Cairo, Egypt
N. Kathab
Affiliation:
Solar Energy Department, National Research Center, 12322 Giza, Cairo, Egypt
K.V. Rao
Affiliation:
Department of Materials Science and Engineering, KTH-Royal Institute of Technology, 10044 Stockholm, Sweden
*
a)Address all correspondence to this author. e-mail: meifang@kth.se
Get access

Abstract

Ink-jet printing technique is used to prepare porous (ZnO)1−x(TiO2)x composite films on indium tin oxide-coated glass substrates. Dye-sensitized solar cells were fabricated using well-characterized printed films of thickness ∼20 and 30 μm, respectively. It is found that the photovoltaic performance of the cells is dependent on the film thickness and the concentrations of ZnO. The obtained results are compared with those of pure ZnO- and TiO2-based cells prepared by the same route to optimize the device efficiency. This study suggests that ink-jet printers promise an inexpensive and simple technology for manufacturing solar cell composite films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
Kalyanasundaram, K. and Grätzel, M.: Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 177, 347 (1998).Google Scholar
Shen, Y-C., Deng, H., Fang, J., and Lu, Z.: Co-sensitization of microporous TiO2 electrodes with dye molecules and quantum-sized semiconductor particles. Colloids Surf., A 175, 135 (2000).CrossRefGoogle Scholar
Smestad, G., Bignozzi, C., and Argazzi, R.: Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol. Energy Mater. Sol. Cells 32, 259 (1994).Google Scholar
Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., Vlachopoulos, N., and Graetzel, M.: Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382 (1993).CrossRefGoogle Scholar
Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
Tennakone, K., Kumara, G.R.R.A., Kottegoda, I.R.M., and Perera, V.P.S.: An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 15 (1999).CrossRefGoogle Scholar
Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H.: Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol. Energy Mater. Sol. Cells 77, 89 (2003).CrossRefGoogle Scholar
Miyasaka, T.: Toward printable sensitized mesoscopic solar cells: Light-harvesting management with thin TiO2 films. J. Phys. Chem. Lett. 2, 262 (2011).CrossRefGoogle Scholar
Yu, J., Zhao, X., and Zhao, Q.: Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method. Mater. Chem. Phys. 69, 25 (2001).CrossRefGoogle Scholar
Zhao, H., Jiang, D., Zhang, S., Catterall, K., and John, R.: Development of a direct photoelectrochemical method for determination of chemical oxygen demand. Anal. Chem. 76, 155 (2003).Google Scholar
Kasanen, J., Suvanto, M., and Pakkanen, T.T.: Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces. J. Appl. Polym. Sci. 111, 2597 (2009).Google Scholar
Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A., and Hashimoto, K.: Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351, 260 (1999).CrossRefGoogle Scholar
Sirghi, L., Aoki, T., and Hatanaka, Y.: Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition. Thin Solid Films 422, 55 (2002).CrossRefGoogle Scholar
Sirghi, L. and Hatanaka, Y.: Hydrophilicity of amorphous TiO2 ultra-thin films. Surf. Sci. 530, L323 (2003).CrossRefGoogle Scholar
Conde-Gallardo, A., Guerrero, M., Castillo, N., Soto, A.B., Fragoso, R., and Cabañas-Moreno, J.G.: TiO2 anatase thin films deposited by spray pyrolysis of an aerosol of titanium diisopropoxide. Thin Solid Films 473, 68 (2005).Google Scholar
Abou-Helal, M.O. and Seeber, W.T.: Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. Appl. Surf. Sci. 195, 53 (2002).Google Scholar
Aarik, J., Aidla, A., Mändar, H., and Uustare, T.: Atomic layer deposition of titanium dioxide from TiCl4 and H2O: Investigation of growth mechanism. Appl. Surf. Sci. 172, 148 (2001).CrossRefGoogle Scholar
Aarik, J., Aidla, A., Uustare, T., Ritala, M., and Leskelä, M.: Titanium isopropoxide as a precursor for atomic layer deposition: Characterization of titanium dioxide growth process. Appl. Surf. Sci. 161, 385 (2000).CrossRefGoogle Scholar
Mills, A., Elliott, N., Parkin, I.P., O’Neill, S.A., and Clark, R.J.: Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobiol., A 151, 171 (2002).CrossRefGoogle Scholar
Bessergenev, V.G., Pereira, R.J.F., Mateus, M.C., Khmelinskii, I.V., Vasconcelos, D.A., Nicula, R., Burkel, E., Botelho do Rego, A.M., and Saprykin, A.I.: Study of physical and photocatalytic properties of titanium dioxide thin films prepared from complex precursors by chemical vapor deposition. Thin Solid Films 503, 29 (2006).CrossRefGoogle Scholar
Karuppuchamy, S., Jeong, J.M., Amalnerkar, D.P., and Minoura, H.: Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition. Vacuum 80, 494 (2006).CrossRefGoogle Scholar
Kordás, K., Mustonen, T., Tóth, G., Jantunen, H., Lajunen, M., Soldano, C., Talapatra, S., Kar, S., Vajtai, R., and Ajayan, P.M.: Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2, 1021 (2006).Google Scholar
Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).Google Scholar
Tekin, E., Smith, P.J., Hoeppener, S., van den Berg, A.M.J., Susha, A.S., Rogach, A.L., Feldmann, J., and Schubert, U.S.: Inkjet printing of luminescent CdTe nanocrystal–polymer composites. Adv. Funct. Mater. 17, 23 (2007).Google Scholar
Wu, Y., Tamaki, T., Volotinen, T., Belova, L., and Rao, K.V.: Enhanced photoresponse of inkjet-printed ZnO thin films capped with CdS nanoparticles. J. Phys. Chem. Lett. 1, 89 (2010).Google Scholar
Rao, C.N.R., Kulkarni, G.U., Thomas, P.J., and Edwards, P.P.: Size-dependent chemistry: Properties of nanocrystals. Chem. Eur. J. 8, 28 (2002).Google Scholar
Nanda, J., Narayan, K.S., Kuruvilla, B.A., Murthy, G.L., and Sarma, D.D.: Sizable photocurrent and emission from solid state devices based on CdS nanoparticles. Appl. Phys. Lett. 72, 1335 (1998).CrossRefGoogle Scholar
Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
Nelson, J.: Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B: Condens. Matter 59, 15374 (1999).Google Scholar
Kong, X., Sun, X., Li, X., and Li, Y.: Catalytic growth of ZnO nanotubes. Mater. Chem. Phys. 82, 997 (2003).Google Scholar
Vayssieres, L., Keis, K., Hagfeldt, A., and Lindquist, S-E.: Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395 (2001).CrossRefGoogle Scholar
Xu, C.X., Sun, X.W., Chen, B.J., Shum, P., Li, S., and Hu, X.: Nanostructural zinc oxide and its electrical and optical properties. J. Appl. Phys. 95, 661 (2004).Google Scholar
Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., Sugihara, H., and Arakawa, H.: Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol. Energy Mater. Sol. Cells 64, 115 (2000).CrossRefGoogle Scholar
Tennakone, K., Kottegoda, I.R.M., De Silva, L.A.A., and Perera, V.P.S.: The possibility of ballistic electron transport in dye-sensitized semiconductor nanocrystalline particle aggregates. Semicond. Sci. Technol. 14, 975 (1999).CrossRefGoogle Scholar
Bandaranayake, P.K.M., Jayaweera, P.V.V., and Tennakone, K.: Dye-sensitization of magnesium-oxide-coated cadmium sulfide. Sol. Energy Mater. Sol. Cells 76, 57 (2003).Google Scholar
Tennakone, K., Bandara, J., Bandaranayake, P.K.M., Kumara, G.R.A., and Konno, A.: Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Jpn. J. Appl. Phys. 40, L732 (2001).CrossRefGoogle Scholar
Kim, S-S., Yum, J-H., and Sung, Y-E.: Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. J. Photochem. Photobiol., A 171, 269 (2005).Google Scholar
Diamant, Y., Chappel, S., Chen, S.G., Melamed, O., and Zaban, A.: Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 248, 1271 (2004).Google Scholar
Zhang, J., Fu, Z., Lv, Q., Yang, X., and Cao, W.: Technology of preparing anode films and the effect of co-sensitization in dye-sensitized solar cells. J. Sol-Gel Sci. Technol. 19 (2012).Google Scholar
Wang, Z.S., Kawauchi, H., Kashima, T., and Arakawa, H.: Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 day-sensitized solar cell. Coord. Chem. Rev. 248, 1381 (2004).Google Scholar
Kang, M.G., Ryu, K.S., Chang, S.H., Park, N.G., Hong, J.S., and Kim, K.J.: Dependence of TiO2 film thickness on photocurrent-voltage characteristics of dye-sensitized solar cells. Bull. Korean Chem. Soc. 5, 742 (2004).Google Scholar
Zhang, Q., Dandeneau, C.S., Zhou, X., and Cao, G.: ZnO nanostructures for dye-sensitized solar cell. Adv. Mater. 20, 4087 (2009).Google Scholar
Anderson, N.A., Ai, X., and Lian, T.: Electron injection dynamics from Ru polypyridyl complexes to ZnO nanocrystalline thin films. J. Phys. Chem. B 107, 14414 (2003).CrossRefGoogle Scholar
Tiwana, P., Docampo, P., Johnston, M.B., Snaith, H.J., and Herz, L.M.: Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5, 5158 (2011).CrossRefGoogle ScholarPubMed