Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T08:21:31.980Z Has data issue: false hasContentIssue false

Instrumented indentation testing of arsenic triselenide–arsenic triiodide pseudobinary glasses with copper

Published online by Cambridge University Press:  17 October 2012

Svetlana R. Lukić-Petrović
Affiliation:
Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
Ljubica R. Đačanin*
Affiliation:
Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
Radenko V. Kisić
Affiliation:
Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
Aleksandar M. Antić
Affiliation:
Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
*
a)Address all correspondence to this author. e-mail: ljubica@df.uns.ac.rs
Get access

Abstract

In this research, we performed experimental investigations of the influence of copper presence on hardness of arsenic triselenide (As2Se3)–arsenic triiodide (AsI3) pseudobinary glasses. The samples belong to the group of chalcogenide glasses, that, when compared with oxide glasses, can be synthesized much more easily in a wide variety of compositions, allowing also fine-tuning of their properties. Here, presence of iodine (I) facilitates glass formation, whereas addition of copper (Cu) creates possibility for interesting optoelectronic properties. As it is important to study mechanical properties of materials with respect to their fabrication and manipulation, we report results of instrumented indentation testing (IIT) of bulk samples of Cux[(As2Se3)0.9(AsI3)0.1]100−x with x = 5, 10, 20, and 25 at.% of Cu. This technique enables fast determination of indentation hardness, hardness value according to Vickers and indentation modulus directly from the indentation load–displacement curves. It was shown that all these parameters increase linearly with the increase of copper content. Improvement of the mechanical properties justifies the addition of Cu into the glass matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mott, N.F. and Davis, E.A.: Electronic Processes in Noncrystalline Materials, 2nd ed. (Clarendon Press, Oxford, 1979).Google Scholar
Popescu, M.A.: Noncrystalline Chalcogenides (Kluwer Academic Publishers, New York, 2002).Google Scholar
Krause, J.T., Kurkjian, C.R, Pinnow, D.A., and Sigety, E.S.: Low acoustic loss chalcogenide glasses–a new category of materials for acoustic and acousto optic applications. Appl. Phys. Lett. 17, 367 (1970).CrossRefGoogle Scholar
Manika, I. and Teteris, J.: Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films. J. Non-Cryst. Solids 90, 505 (1987).CrossRefGoogle Scholar
Petrović, D.M., Lukić, S.R., Avramov, M.I., and Khiminets, V.V.: Synthesis and the absorption spectra of Ge-As-S-Se-I system glass. J. Mater. Sci. Lett. 5, 290 (1986).CrossRefGoogle Scholar
Charnovych, S., Erdélyi, G., Kokenyesi, S., and Csik, A.: Effect of pressure on photoinduced expansion of As0.2Se0.8 layer. J. Non-Cryst. Solids 357, 2349 (2011).CrossRefGoogle Scholar
Lukić, S.R., Petrović, D.M., Turyantisa, I., and Khiminets, O.V.: Characteristics of optical recording on thin films of quaternary glasses Cu-As-Se-I. J. Mater. Sci. 26, 5517 (1991).CrossRefGoogle Scholar
Sanghera, J.S., Florea, C.M., Shaw, L.B., Purées, P., Nguyen, V.Q., Bashkansky, M., Dutton, Z., and Aggarwal, I.D.: Nonlinear properties of chalcogenide glasses and fibers. J. Non-Cryst. Solids 354, 462 (2008).CrossRefGoogle Scholar
Lukić, S.R., Skuban, F., Petrović, D.M., and Šiđanin, L.: Effect of copper on density and microhardness of amorphous AsSeyIz. J. Mater. Sci. Lett. 19, 139 (2000).CrossRefGoogle Scholar
Lukić, S.R., Petrović, D.M., Skuban, F., Šiđanin, L., and Gúth, I.O.: The morphologies of fractured surfaces and fracture toughness in some As-Se-Sb-S-I glasses. Appl. Surf. Sci. 252, 7917 (2006).CrossRefGoogle Scholar
Štrbac, D.: Characterization of metal-chalcogenides films from Cu-AsSeyIz system. Ph.D. Thesis, University of Novi Sad, Faculty of Sciences, Novi Sad, 2011.Google Scholar
Feltz, A.: Amorphous and Glassy Inorganic Solids (Akademie-Verlag, Berlin, 1983) [in German].Google Scholar
Frumar, M., Frumarova, B., and Wagner, T.: Amorphous and glassy semiconducting chalcogenides. In Comprehensive Semiconductor Science and Technology, Bhattacharya, P., Fornari, R., and Kamimura, H., eds. (Elsevier B.V., Amsterdam, Netherlands, 2011); pp. 206261.CrossRefGoogle Scholar
Vassilev, V.S. and Boycheva, S.V.: Chemical sensors with chalcogenide glassy membranes. Talanta 67, 20 (2005).CrossRefGoogle ScholarPubMed
Adam, J-L.: Lanthanides in nonoxide glasses. Chem. Rev. 102, 2461 (2002).CrossRefGoogle ScholarPubMed
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
Sakharova, N.A., Fernandes, J.V., Antunes, J.M., and Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095 (2009).CrossRefGoogle Scholar
Cabibbo, M., Ricci, P., Cecchini, R., Rymuza, Z., Sullivan, J., Dub, S., and Cohen, S.: An international round-robin calibration protocol for nanoindentation measurements. Micron 43, 215 (2012).CrossRefGoogle ScholarPubMed
Ullner, C., Beckmann, J., and Morrell, R.: Instrumented indentation test for advanced technical ceramics. J. Eur. Ceram. Soc. 22, 1183 (2002).CrossRefGoogle Scholar
ISO/DIN 14583: Instrumented Indentation Test for Hardness and Other Materials Parameter (2000).Google Scholar
Gong, J. and Li, Y.: An energy-balance analysis for the size effect in low-load hardness testing. J. Mater. Sci. 35, 209 (2000).CrossRefGoogle Scholar
Sangwal, K., Surowska, B., and Blaziak, P.: Analysis of the indentation size effect in the microhardness measurement of some cobalt-based alloys. Mater. Chem. Phys. 77, 511 (2002).CrossRefGoogle Scholar
Peng, Z., Gong, J., and Miao, H.: On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. J. Eur. Ceram. Soc. 24, 2193 (2004).CrossRefGoogle Scholar
Kavetskyy, T., Borc, J., and Sangwal, K.: Study of indentation microhardness of bismuth-doped As2Se3 glasses. Optoelectron. Adv. Mater. Rapid Commun. 5, 755 (2011).Google Scholar
Quinn, J.B., Nguyen, V.Q., Sanghera, J.S., Lloyd, I.K., Pureza, P.C., Miklos, R.E., and Aggarwal, I.D.: Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers. J. Non-Cryst. Solids 325, 150 (2003).CrossRefGoogle Scholar
Lukić, S.R., Petrović, D.M., Gut, I.O., and Avramov, M.I.: Complex noncrystalline chalcogenides: Technology of preparation and spectral characteristics. J. Res. Phys. 30, 111 (2006).Google Scholar
Lukić, S.R. and Petrović, D.M.: Thermal analysis and x-ray diffraction investigation of the copper (I) selenoarsenate (Cu3AsSe4). J. Optoelectron. Adv. Mater. 1, 43 (1999).Google Scholar
Lukić, S.R., Petrović, D.M., Petrović, A.F., and Popović, Ž.N.: A study of the structural units in some amorphous semiconductors of the Cu-As-Se-I system by x-ray analysis. Mater. Sci. Forum 321324, 525 (2000).CrossRefGoogle Scholar
Handbook of Chemistry and Physics, 55th ed.; Weast, R.D. ed.; CRC Press, Cleveland 1974–1975; p. F-207.Google Scholar
Lukić, S.R. and Petrović, D.M.: Complex Amorphous Chalcogenides (University of Novi Sad, Faculty of Sciences, Novi Sad, 2002), p. 72 [in Serbian].Google Scholar
Bourhis, E.L., Gadaud, P., Guin, J-P., Tournerie, N., Zhang, X.H., Lucas, J., and Rouxel, T.: Temperature dependence of the mechanical behavior of a GeAsSe glass. Scr. Mater. 45, 317 (2001).CrossRefGoogle Scholar
Guin, J-P., Rouxel, T., Keryvin, V., Sangleboeuf, J-C., Serre, I., and Lucas, J.: Indentation creep of Ge-Se chalcogenide glasses below Tg: Elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids 298, 260 (2002).CrossRefGoogle Scholar
Guin, J-P., Rouxel, T., Sangleboeuf, J-C., Melscoët, I., and Lucas, J.: Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002).CrossRefGoogle Scholar
Li, H. and Brad, R.C.: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).CrossRefGoogle Scholar
Quinn, J.B. and Quinn, G.D.: Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 32, 4331 (1997).CrossRefGoogle Scholar