Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T14:32:53.417Z Has data issue: false hasContentIssue false

Interaction of water with oxide thin film model systems

Published online by Cambridge University Press:  22 January 2019

Martin Sterrer*
Affiliation:
University of Graz, Institute of Physics, NAWI Graz, 8010 Graz, Austria
Niklas Nilius
Affiliation:
Carl von Ossietzky Universität Oldenburg, Institut für Physik, 26111 Oldenburg, Germany
Shamil Shaikhutdinov
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Chemical Physics, 14195 Berlin, Germany
Markus Heyde
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Chemical Physics, 14195 Berlin, Germany
Thomas Schmidt
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Chemical Physics, 14195 Berlin, Germany
Hans-Joachim Freund*
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Chemical Physics, 14195 Berlin, Germany
*
a)Address all correspondence to these authors. e-mail: martin.sterrer@uni-graz.at
Get access

Abstract

The interaction between water and oxide surfaces plays an important role in many technological applications and environmental processes. However, gaining fundamental understanding of processes at oxide–water interfaces is challenging because of the complexity of the systems. To this end, results of experimental and computational studies utilizing well-defined oxide surfaces help to gain molecular-scale insights into the properties and reactivity of water on oxide surfaces. This is a necessary basis for the understanding of oxide surface chemistry in more complex environments. This review highlights recent advances in the fundamental understanding of oxide–water interaction using surface science experiments. In particular, we will discuss the results on crystalline and well-defined supported thin film oxide samples of the alkaline earth oxides (MgO and CaO), silica (SiO2), and magnetite (Fe3O4). Several aspects of water–oxide interactions such as adsorption modes (molecular versus dissociative), formation of long-range ordered structures, and dissolution processes will be discussed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Thiel, P.A. and Madey, T.E.: The interaction of water with solid surfaces—Fundamental aspects. Surf. Sci. Rep. 7, 211 (1987).CrossRefGoogle Scholar
Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).CrossRefGoogle Scholar
Verdaguer, A., Sacha, G.M., Bluhm, H., and Salmeron, M.: Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 1478 (2006).CrossRefGoogle Scholar
Ewing, G.E.: Ambient thin film water on insulator surfaces. Chem. Rev. 106, 1511 (2006).CrossRefGoogle ScholarPubMed
Brown, G.E., Henrich, V.E., Casey, W.H., Clark, D.L., Eggleston, C., Felmy, A., Goodman, D.W., Grätzel, M., Maciel, G., McCarthy, M.I., Nealson, K.H., Sverjensky, D.A., Toney, M.F., and Zachara, J.M.: Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77 (1999).CrossRefGoogle ScholarPubMed
Bjornehohn, E., Hansen, M.H., Hodgson, A., Liu, L.M., Limmer, D.T., Michaelides, A., Pedevilla, P., Rossmeisl, J., Shen, H., Tocci, G., Tyrode, E., Walz, M.M., Werner, J., and Bluhm, H.: Water at interfaces. Chem. Rev. 116, 7698 (2016).CrossRefGoogle Scholar
Hodgson, A. and Haq, S.: Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381 (2009).CrossRefGoogle Scholar
Carrasco, J., Hodgson, A., and Michaelides, A.: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667 (2012).CrossRefGoogle Scholar
Rao, R.R., Kolb, M.J., Hwang, J., Pedersen, A.F., Mehta, A., You, H., Stoerzinger, K.A., Feng, Z.X., Zhou, H., Bluhm, H., Giordano, L., Stephens, I.E.L., and Shao-Horn, Y.: Surface orientation dependent water dissociation on rutile ruthenium dioxide. J. Phys. Chem. C 122, 17802 (2018).CrossRefGoogle Scholar
Schwarz, M., Faisal, F., Mohr, S., Hohner, C., Werner, K., Xu, T., Skala, T., Tsud, N., Prince, K.C., Matolin, V., Lykhach, Y., and Libuda, J.: Structure-dependent dissociation of water on cobalt oxide. J. Phys. Chem. Lett. 9, 2763 (2018).CrossRefGoogle ScholarPubMed
Hu, X.L., Carrasco, J., Klimes, J., and Michaelides, A.: Trends in water monomer adsorption and dissociation on flat insulating surfaces. Phys. Chem. Chem. Phys. 13, 12447 (2011).CrossRefGoogle ScholarPubMed
Mu, R.T., Zhao, Z.J., Dohnalek, Z., and Gong, J.L.: Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 46, 1785 (2017).CrossRefGoogle ScholarPubMed
Meier, M., Hulva, J., Jakub, Z., Pavelec, J., Setvin, M., Bliem, R., Schmid, M., Diebold, U., Franchini, C., and Parkinson, G.S.: Water agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. U. S. A 115, E5642 (2018).CrossRefGoogle Scholar
Wlodarczyk, R., Sierka, M., Kwapien, K., Sauer, J., Carrasco, E., Aumer, A., Gomes, J.F., Sterrer, M., and Freund, H-J.: Structures of the ordered water monolayer on MgO(001). J. Phys. Chem. C 115, 6764 (2011).CrossRefGoogle Scholar
Fenter, P. and Sturchio, N.C.: Mineral-water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surf. Sci. 77, 171 (2004).CrossRefGoogle Scholar
Heidberg, J., Redlich, B., and Wetter, D.: Adsorption of water vapor on the MgO(100) single-crystal surface. Ber. Bunsenges. Phys. Chem. 99, 1333 (1995).CrossRefGoogle Scholar
Meyer, B., Marx, D., Dulub, O., Diebold, U., Kunat, M., Langenberg, D., and Wöll, C.: Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew. Chem., Int. Ed. 43, 6642 (2004).CrossRefGoogle ScholarPubMed
Brookes, I.M., Muryn, C.A., and Thornton, G.: Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87, 266103 (2001).CrossRefGoogle Scholar
Balajka, J., Hines, M.A., DeBenedetti, W.J.I., Komora, M., Pavelec, J., Schmid, M., and Diebold, U.: High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 361, 786 (2018).CrossRefGoogle ScholarPubMed
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
Kimmel, G.A., Baer, M., Petrik, N.G., VandeVondele, J., Rousseau, R., and Mundy, C.J.: Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3, 778 (2012).CrossRefGoogle ScholarPubMed
Petrik, N.G. and Kimmel, G.A.: Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2(110). J. Phys. Chem. C 119, 23059 (2015).CrossRefGoogle Scholar
Wang, Y.M. and Wöll, C.: IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: Bridging the materials gap. Chem. Soc. Rev. 46, 1875 (2017).CrossRefGoogle ScholarPubMed
Freund, H.J., Kuhlenbeck, H., and Staemmler, V.: Oxide surfaces. Rep. Prog. Phys. 59, 283 (1996).CrossRefGoogle Scholar
Campbell, C.T.: Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorption properties. Surf. Sci. Rep. 27, 1 (1997).CrossRefGoogle Scholar
Netzer, F.P. and Fortunelli, A., eds.: Oxide Materials at the Two-dimensional Limit, Springer Series in Materials Science, Vol. 234 (Springer, Switzerland, 2016).CrossRefGoogle Scholar
Nilius, N.: Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 64, 595 (2009).CrossRefGoogle Scholar
Surnev, S., Ramsey, M.G., and Netzer, F.P.: Vanadium oxide surface studies. Prog. Surf. Sci. 73, 117 (2003).CrossRefGoogle Scholar
Kresse, G., Schmid, M., Napetschnig, E., Shishkin, M., Köhler, L., and Varga, P.: Structure of the ultrathin aluminum oxide film on NiAl(110). Science 308, 1440 (2005).CrossRefGoogle Scholar
Henry, C.R.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231 (1998).CrossRefGoogle Scholar
Schintke, S., Messerli, S., Pivetta, M., Patthey, F., Libioulle, L., Stengel, M., De Vita, A., and Schneider, W-D.: Insulator at the ultrathin limit: MgO on Ag(001). Phys. Rev. Lett. 87, 276801 (2001).CrossRefGoogle Scholar
Klaua, M., Ullmann, D., Barthel, J., Wulfhekel, W., Kirschner, J., Urban, R., Monchesky, T.L., Enders, A., Cochran, J.F., and Heinrich, B.: Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers. Phys. Rev. B 64, 134411 (2001).CrossRefGoogle Scholar
Wu, M.C., Corneille, J.S., Estrada, C.A., He, J.W., and Goodman, D.W.: Synthesis and characterization of ultra-thin MgO films on Mo(100). Chem. Phys. Lett. 182, 472 (1991).CrossRefGoogle Scholar
Benedetti, S., Benia, H.M., Nilius, N., Valeri, S., and Freund, H.J.: Morphology and optical properties of MgO thin films on Mo(001). Chem. Phys. Lett. 430, 330 (2006).CrossRefGoogle Scholar
Shao, X., Myrach, P., Nilius, N., and Freund, H.J.: Growth and morphology of calcium-oxide films grown on Mo(001). J. Phys. Chem. C 115, 8784 (2011).CrossRefGoogle Scholar
Nilius, N., Benedetti, S., Pan, Y., Myrach, P., Noguera, C., Giordano, L., and Goniakowski, J.: Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Phys. Rev. B 86, 205410 (2012).CrossRefGoogle Scholar
Goniakowski, J., Finocchi, C., and Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).CrossRefGoogle Scholar
Finocchi, F., Barbier, A., Jupille, J., and Noguera, C.: Stability of rocksalt (111) polar surfaces: Beyond the octopole. Phys. Rev. Lett. 92, 136101 (2004).CrossRefGoogle ScholarPubMed
Pal, J., Smerieri, M., Celasco, E., Savio, L., Vattuone, L., and Rocca, M.: Morphology of monolayer MgO films on Ag(100): Switching from corrugated islands to extended flat terraces. Phys. Rev. Lett. 112, 126102 (2014).CrossRefGoogle ScholarPubMed
Pal, J., Smerieri, M., Celasco, E., Savio, L., Vattuone, L., Ferrando, R., Tosoni, S., Giordano, L., Pacchioni, G., and Rocca, M.: How growing conditions and interfacial oxygen affect the final morphology of MgO/Ag(100) films. J. Phys. Chem. C 118, 26091 (2014).CrossRefGoogle Scholar
McKenna, K.P. and Shluger, A.L.: Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859 (2008).CrossRefGoogle ScholarPubMed
Benedetti, S., Torelli, P., Valeri, S., Benia, H.M., Nilius, N., and Renaud, G.: Structure and morphology of thin MgO films on Mo(001). Phys. Rev. B 78, 195411 (2008).CrossRefGoogle Scholar
Benedetti, S., Stavale, F., Valeri, S., Noguera, C., Freund, H.J., Goniakowski, J., and Nilius, N.: Steering the growth of metal ad-particles via interface interactions between a MgO thin film and a Mo support. Adv. Funct. Mater. 23, 75 (2013).CrossRefGoogle Scholar
Giordano, L., Cinquini, F., and Pacchioni, G.: Tuning the surface metal work function by deposition of ultrathin oxide films: Density functional calculations. Phys. Rev. B 73, 045414 (2006).CrossRefGoogle Scholar
Benia, H.M., Myrach, P., Nilius, N., and Freund, H.J.: Structural and electronic characterization of the MgO/Mo(001) interface using STM. Surf. Sci. 604, 435 (2010).CrossRefGoogle Scholar
Sterrer, M., Fischbach, E., Risse, T., and Freund, H-J.: Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005).CrossRefGoogle ScholarPubMed
Sterrer, M., Fischbach, E., Heyde, M., Nilius, N., Rust, H.P., Risse, T., and Freund, H.J.: Electron paramagnetic resonance and scanning tunneling microscopy investigations on the formation of F+ and F0 color centers on the surface of thin MgO(001) films. J. Phys. Chem. B 110, 8665 (2006).CrossRefGoogle Scholar
Shao, X., Nilius, N., Myrach, P., Freund, H.J., Martinez, U., Prada, S., Giordano, L., and Pacchioni, G.: Strain-induced formation of ultrathin mixed-oxide films. Phys. Rev. B 83, 245407 (2011).CrossRefGoogle Scholar
Cui, Y., Shao, X., Baldofski, M., Sauer, J., Nilius, N., and Freund, H.J.: Adsorption, activation, and dissociation of oxygen on doped oxides. Angew. Chem., Int. Ed. 52, 11385 (2013).CrossRefGoogle ScholarPubMed
Sastry, S., Debenedetti, P.G., and Stillinger, F.H.: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).CrossRefGoogle Scholar
Zallen, R.: The Physics of Amorphous Solids (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).Google Scholar
Berthier, L. and Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).CrossRefGoogle Scholar
Mauro, J.C. and Zanotto, E.D.: Two centuries of glass research: Historical trends, current status, and grand challenges for the future. Int. J. Appl. Glass Sci. 5, 313 (2014).CrossRefGoogle Scholar
Zachariasen, W.H.: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841 (1932).CrossRefGoogle Scholar
Lichtenstein, L., Heyde, M., and Freund, H-J.: Atomic arrangement in two-dimensional silica: From crystalline to vitreous structures. J. Phys. Chem. C 116, 20426 (2012).CrossRefGoogle Scholar
Löffler, D., Uhlrich, J.J., Baron, M., Yang, B., Yu, X., Lichtenstein, L., Heinke, L., Büchner, C., Heyde, M., Shaikhutdinov, S., Freund, H-J., Włodarczyk, R., Sierka, M., and Sauer, J.: Growth and structure of crystalline silica sheet on Ru(0001). Phys. Rev. Lett. 105, 146104 (2010).CrossRefGoogle Scholar
Lichtenstein, L., Büchner, C., Yang, B., Shaikhutdinov, S., Heyde, M., Sierka, M., Włodarczyk, R., Sauer, J., and Freund, H-J.: The atomic structure of a metal-supported vitreous thin silica film. Angew. Chem., Int. Ed. 51, 404 (2012).CrossRefGoogle ScholarPubMed
Lichtenstein, L., Heyde, M., and Freund, H-J.: Crystalline-vitreous interface in two dimensional silica. Phys. Rev. Lett. 109, 106101 (2012).CrossRefGoogle ScholarPubMed
Yu, X., Yang, B., Boscoboinik, J.A., Shaikhutdinov, S., and Freund, H-J.: Support effects on the atomic structure of ultrathin silica films on metals. Appl. Phys. Lett. 100, 151608 (2012).CrossRefGoogle Scholar
Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A., and Kaiser, U.: Direct imaging of a two-dimensional silica glass on graphene. Nano Lett. 12, 1081 (2012).CrossRefGoogle Scholar
Altman, E.I. and Schwarz, U.D.: Structural and electronic heterogeneity of two-dimensional amorphous silica layers. Adv. Mater. Interfaces 1, 1400108 (2014).CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U.: The Iron Oxides (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004); pp. 17.Google Scholar
Ertl, G., Knözinger, H., Schueth, F., and Weitkamp, J., eds.: Handbook of Heterogeneous Catalysis, Vol. 2, compl. rev. and enlarged ed. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).CrossRefGoogle Scholar
Zboril, R., Mashlan, M., and Petridis, D.: Iron(III) oxides from thermal processes: Synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969 (2002).CrossRefGoogle Scholar
Weiss, W. and Ranke, W.: Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog. Surf. Sci. 70, 1 (2002).CrossRefGoogle Scholar
Condon, N.G., Leibsle, F.M., Parker, T., Lennie, A.R., Vaughan, D.J., and Thornton, G.: Biphase ordering on Fe3O4(111). Phys. Rev. B 55, 15885 (1997).CrossRefGoogle Scholar
Barbieri, A., Weiss, W., Hove, M.A.V., and Somorjai, G.A.: Magnetite Fe3O4(111): Surface structure by LEED crystallography and energetics. Surf. Sci. 302, 259 (1994).CrossRefGoogle Scholar
Parkinson, G.S.: Iron oxide surfaces. Surf. Sci. Rep. 71, 272 (2016).CrossRefGoogle Scholar
Sala, A., Marchetto, H., Qin, Z.H., Shaikhutdinov, S., Schmidt, T., and Freund, H-J.: Defects and inhomogeneities in Fe3O4(111) thin film growth on Pt(111). Phys. Rev. B 86, 155430 (2012).CrossRefGoogle Scholar
Melzer, M., Urban, J., Sack-Kongehl, H., Weiss, K., Freund, H-J., and Schlögl, R.: Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation. Catal. Lett. 81, 219 (2002).CrossRefGoogle Scholar
Weiss, W. and Ritter, M.: Metal oxide heteroepitaxy: Stranski-Krastanov growth of iron oxides on Pt(111). Phys. Rev. B 59, 5201 (1999).CrossRefGoogle Scholar
Margulies, D.T., Parker, F.T., Rudee, M.L., Spada, F.E., Chapman, J.N., Aitchison, P.R., and Berkowitz, A.E.: Origin of the anomalous magnetic behavior in single crystal Fe3O4 films. Phys. Rev. Lett. 79, 5201 (1997).CrossRefGoogle Scholar
Ritter, M. and Weiss, W.: Fe3O4(111) surface structure determined by LEED crystallography. Surf. Sci. 432, 81 (1999).CrossRefGoogle Scholar
Shaikhutdinov, S.K., Ritter, M., Wang, X.G., Over, H., and Weiss, W.: Defect structures on epitaxial Fe3O4(111) films. Phys. Rev. B 60, 11062 (1999).CrossRefGoogle Scholar
Lemire, C., Meyer, R., Henrich, V.E., Shaikhutdinov, S., and Freund, H.J.: The surface structure of Fe3O4(111) films as studied by CO adsorption. Surf. Sci. 572, 103 (2004).CrossRefGoogle Scholar
Li, X., Paier, J., Sauer, J., Mirabella, F., Zaki, E., Ivars-Barceló, F., Shaikhutdinov, S., and Freund, H.J.: Surface termination of Fe3O4(111) films studied by CO adsorption revisited. J. Phys. Chem. B 122, 527 (2018).CrossRefGoogle ScholarPubMed
Zhao, X., Shao, X., Fujimori, Y., Bhattacharya, S., Ghiringhelli, L.M., Freund, H-J., Sterrer, M., Nilius, N., and Levchenko, S.V.: Formation of water chains on CaO(001): What drives the 1D growth? J. Phys. Chem. Lett. 6, 1204 (2015).CrossRefGoogle ScholarPubMed
Carrasco, J., Illas, F., and Lopez, N.: Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide(001) surfaces. Phys. Rev. Lett. 100, 016101 (2008).CrossRefGoogle ScholarPubMed
Fujimori, Y., Zhao, X., Shao, X., Levchenko, S.V., Nilius, N., Sterrer, M., and Freund, H-J.: Interaction of water with the CaO(001) surface. J. Phys. Chem. C 120, 5565 (2016).CrossRefGoogle Scholar
Ferry, D., Glebov, A., Senz, V., Suzanne, J., Toennies, J.P., and Weiss, H.: Observation of the second ordered phase of water on the MgO(100) surface: Low energy electron diffraction and helium atom scattering studies. J. Chem. Phys. 105, 1697 (1996).CrossRefGoogle Scholar
Halwidl, D., Stöger, B., Mayr-Schmölzer, W., Pavelec, J., Fobes, D., Peng, J., Mao, Z.Q., Parkinson, G.S., Schmid, M., Mittendorfer, F., Redinger, J., and Diebold, U.: Adsorption of water at the SrO surface of ruthenates. Nat. Mater. 15, 450 (2016).CrossRefGoogle Scholar
Kim, Y.D., Lynden-Bell, R.M., Alavi, A., Stulz, J., and Goodman, D.W.: Evidence for partial dissociation of water on flat MgO(100) surfaces. Chem. Phys. Lett. 352, 318 (2002).CrossRefGoogle Scholar
Leist, U., Ranke, W., and Al-Shamery, K.: Water adsorption and growth of ice on epitaxial Fe3O4(111), FeO(111), and Fe2O3(biphase). Phys. Chem. Chem. Phys. 5, 2435 (2003).CrossRefGoogle Scholar
Joseph, Y., Kuhrs, C., Ranke, W., Ritter, M., and Weiss, W.: Adsorption of water on FeO(111) and Fe3O4(111): Identification of active sites for dissociation. Chem. Phys. Lett. 314, 195 (1999).CrossRefGoogle Scholar
Joseph, Y., Ranke, W., and Weiss, W.: Water on FeO(111) and Fe3O4(111): Adsorption behavior on different surface terminations. J. Phys. Chem. B 104, 3224 (2000).CrossRefGoogle Scholar
Redhead, P.A.: Thermal desorption of gases. Vacuum 12, 203 (1962).CrossRefGoogle Scholar
de Jong, A.M. and Niemantsverdriet, J.W.: Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surf. Sci. 233, 355 (1990).CrossRefGoogle Scholar
Mirabella, F., Zaki, E., Ivars-Barcelo, F., Li, X., Paier, J., Sauer, J., Shaikhutdinov, S., and Freund, H-J.: Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111). Angew. Chem., Int. Ed. 57, 1409 (2017).CrossRefGoogle Scholar
Habenschaden, E. and Küppers, J.: Evaluation of flash desorption spectra. Surf. Sci. Lett. 138, L147 (1984).Google Scholar
Tait, S.L., Dohnálek, Z., Campbell, C.T., and Kay, B.D.: n-alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n-butane. J. Chem. Phys. 122, 164707 (2005).CrossRefGoogle ScholarPubMed
Dementyev, P., Dostert, K-H., Ivars-Barceló, F., O’Brien, C.P., Mirabella, F., Schauermann, S., Li, X., Paier, J., Sauer, J., and Freund, H-J.: Water interaction with iron oxides. Angew. Chem., Int. Ed. 54, 13942 (2015).CrossRefGoogle ScholarPubMed
Liu, P., Kendelewicz, T., Brown, G.E., Parks, G.A., and Pianetta, P.: Reaction of water with vacuum-cleaved CaO(100) surfaces: An X-ray photoemission spectroscopy study. Surf. Sci. 416, 326 (1998).Google Scholar
Liu, P., Kendelewicz, T., Gordon, G.E., and Parks, G.A.: Reaction of water with MgO(100) surfaces. Part I: Synchrotron X-ray photoemission studies of low-defect surfaces. Surf. Sci. 412–13, 287 (1998).CrossRefGoogle Scholar
Carrasco, E., Brown, M.A., Sterrer, M., Freund, H-J., Kwapien, K., Sierka, M., and Sauer, J.: Thickness-dependent hydroxylation of MgO(001) thin films. J. Phys. Chem. C 114, 18207 (2010).CrossRefGoogle Scholar
Savio, L., Celasco, E., Vattuone, L., Rocca, M., and Senet, P.: MgO/Ag(100): Confined vibrational modes in the limit of ultrathin films. Phys. Rev. B 67, 075420 (2003).CrossRefGoogle Scholar
Ringleb, F., Fujimori, Y., Wang, H.F., Ariga, H., Carrasco, E., Sterrer, M., Freund, H.J., Giordano, L., Pacchioni, G., and Goniakowski, J.: Interaction of water with FeO(111)/Pt(111): Environmental effects and influence of oxygen. J. Phys. Chem. C 115, 19328 (2011).CrossRefGoogle Scholar
Giordano, L., Lewandowski, M., Groot, I.M.N., Sun, Y.N., Goniakowski, J., Noguera, C., Shaikhutdinov, S., Pacchioni, G., and Freund, H.J.: Oxygen-induced transformations of an FeO(111) film on Pt(111): A combined DFT and STM study. J. Phys. Chem. C 114, 21504 (2010).CrossRefGoogle Scholar
Sun, Y.N., Giordano, L., Goniakowski, J., Lewandowski, M., Qin, Z.H., Noguera, C., Shaikhutdinov, S., Pacchioni, G., and Freund, H.J.: The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew. Chem., Int. Ed. 49, 4418 (2010).CrossRefGoogle ScholarPubMed
Sun, Y.N., Qin, Z.H., Lewandowski, M., Carrasco, E., Sterrer, M., Shaikhutdinov, S., and Freund, H.J.: Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J. Catal. 266, 359 (2009).CrossRefGoogle Scholar
Shaikhutdinov, S. and Freund, H.J.: Ultrathin silica films on metals: The long and winding road to understanding the atomic structure. Adv. Mater. 25, 49 (2013).CrossRefGoogle Scholar
Yang, B., Emmez, E., Kaden, W.E., Yu, X., Boscoboinik, J.A., Sterrer, M., Shaikhutdinov, S., and Freund, H-J.: Hydroxylation of metal-supported sheet-like silica films. J. Phys. Chem. C 117, 8336 (2013).CrossRefGoogle Scholar
Yu, X., Emmez, E., Pan, Q., Yang, B., Pomp, S., Kaden, W.E., Sterrer, M., Shaikhutdinov, S., Freund, H-J., Goikoetxea, I., Wlodarczyk, R., and Sauer, J.: Electron stimulated hydroxylation of a metal supported silicate film. Phys. Chem. Chem. Phys. 18, 3755 (2016).CrossRefGoogle ScholarPubMed
Kaden, W.E., Pomp, S., Sterrer, M., and Freund, H.J.: Insights into silica bilayer hydroxylation and dissolution. Top. Catal. 60, 471 (2017).CrossRefGoogle Scholar
Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf., A 173, 1 (2000).CrossRefGoogle Scholar
Bickmore, B.R., Wheeler, J.C., Bates, B., Nagy, K.L., and Eggett, D.L.: Reaction pathways for quartz dissolution determined by statistical and graphical analysis of macroscopic experimental data. Geochim. Cosmochim. Acta 72, 4521 (2008).CrossRefGoogle Scholar
Ringleb, F., Sterrer, M., and Freund, H-J.: Preparation of Pd–MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(001)-supported MgO(001) thin films. Appl. Catal., A 474, 186 (2014).CrossRefGoogle Scholar
Vermilyea, D.A.: Dissolution of MgO and Mg(OH)2 in aqueous solutions. J. Electrochem. Soc. 116, 1179 (1969).CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J.: Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta 68, 31 (2004).CrossRefGoogle Scholar
Wang, H.F., Ariga, H., Dowler, R., Sterrer, M., and Freund, H.J.: Surface science approach to catalyst preparation—Pd deposition onto thin Fe3O4(111) films from PdCl2 precursor. J. Catal. 286, 1 (2012).CrossRefGoogle Scholar
Wang, H.F., Kaden, W.E., Dowler, R., Sterrer, M., and Freund, H.J.: Model oxide-supported metal catalysts—Comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Phys. Chem. Chem. Phys. 14, 11525 (2012).CrossRefGoogle ScholarPubMed
Burson, K.M., Gura, L., Kell, B., Büchner, C., Lewandowski, A.L., Heyde, M., and Freund, H-J.: Resolving amorphous solid-liquid interfaces by atomic force microscopy. Appl. Phys. Lett. 108, 201602 (2016).CrossRefGoogle Scholar
Abraham, F.F. and Batra, I.P.: Theoretical interpretation of atomic-force- microscope images of graphite. Surf. Sci. 209, L125 (1989).CrossRefGoogle Scholar