Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T06:47:22.193Z Has data issue: false hasContentIssue false

Interdiffusion and the vacancy wind effect in Ni–Pt and Co–Pt systems

Published online by Cambridge University Press:  11 August 2011

Vadegadde Duggappa Divya
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
Upadrasta Ramamurty
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
Aloke Paul*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
*
a)Address all correspondence to this author. e-mail: aloke@materials.iisc.ernet.in
Get access

Abstract

In this study, bulk and multifoil diffusion couple experiments were conducted to examine the interdiffusion process in Ni–Pt and Co–Pt binary alloy systems. Inter-, intrinsic-, and tracer-diffusion coefficients at different temperatures, and as a function of the composition, were estimated by using the experimental data. Results show that in both the alloy systems, Pt is the slower diffusing species, and hence the interdiffusion process is controlled by either Ni or Co. The thermodynamic driving force makes the intrinsic diffusion coefficients of Co and Ni higher in the range of 30–70 at.%. The low activation energy for Co and Ni impurity diffusion in Pt compared with Pt in Ni and Co indicates that the size of the atoms plays an important role. The vacancy wind effects on the diffusion process are examined in detail, and it was demonstrated that its contribution falls within the experimental scatter and hence can be neglected.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sims, C.T., Stoloff, N.S., and Hagel, W.C.: Superalloys II (John Wiley & Sons, New York, 1987), p. 3.Google Scholar
2.Reed, R.C.: Superalloys (Cambridge University Press, Cambridge, UK, 2006), p. 33.CrossRefGoogle Scholar
3.Coutsouradis, D., Davin, A., and Lamberigts, M.: Cobalt-based superalloys for applications in gas turbines. Mater. Sci. Eng. 88, 11 (1987).CrossRefGoogle Scholar
4.Jena, A.K. and Chaturvedi, M.C.: The role of alloying elements in the design of nickel-base superalloys. J. Mater. Sci. 19, 3121 (1984).CrossRefGoogle Scholar
5.Tatlock, G.J., Hurd, T.J., and Punni, J.S.: High temperature degradation of nickel based alloys. Platinum Met. Rev. 31, 26 (1987).CrossRefGoogle Scholar
6.Garimella, N., Ode, M., Ikeda, M., Murakami, H., and Sohn, Y.H.: Effects of Ir or Ta alloying addition on interdiffusion of L12–Ni3Al. Intermetallics 16, 1095 (2008).CrossRefGoogle Scholar
7.Hobbs, R.A., Zhang, L., Rae, C.M.F., and Tin, S.: The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys. Mater. Sci. Eng., A 65, 489 (2008).Google Scholar
8.Hayashi, S., Wang, W., Sordelet, D.J., and Gleeson, B.: Interdiffusion behaviour of Pt-modified γ-Ni + γ′-Ni3Al alloys coupled to Ni-Al based alloys. Metall. Mater. Trans. A 36A, 1769 (2005).CrossRefGoogle Scholar
9.Haynes, J.A., Pint, B.A., Zhang, Y., and Wright, I.G.: The effect of Pt content on γ–γ′ NiPtAl coatings. Surf. Coat. Tech. 203, 413 (2008).CrossRefGoogle Scholar
10.Gleeson, B., Wang, W., Hayashi, S., and Sordelet, D.: Effect of platinum on the interdiffusion and oxidation behaviour of Ni-Al based alloys. Mater. Sci. Forum 461, 213 (2004).CrossRefGoogle Scholar
11.Borovskiy, I.B., Marchukova, I.D., Ugaste, Y.E., Phys. Met. Metallogr. 24, 51 (1967) as reported in H. Mehrer (editor): Diffusion in Solid Metals and Alloys, Vol. 26, Landolt-Börstein New Series on Numerical Data and Functional Relationships in Science and Technology, (Springer-Verlag, Berlin, 1990), p. 298.Google Scholar
12.Ijima, Y., Taguchi, O., and Hirano, K.: Interdiffusion in Co-Pt alloys. Trans. Jpn. Inst. Met. 21, 366 (1980).CrossRefGoogle Scholar
13.Million, B. and Kučera, J.: Diffusion of platinum-193m in platinum, gamma-iron, cobalt, and nickel. Kovove Mater. 11, 300 (1973).Google Scholar
14.Minamino, Y., Yoshida, H., Jung, S.B., Hirao, K., and Yamane, T.: Diffusion of platinum and molybdenum in Ni and Ni3Al. Defect. Diffus. Forum 143, 257 (1997).CrossRefGoogle Scholar
15.Karunaratne, M.S.A. and Reed, R.C.: Interdiffusion of the platinum-group metals in nickel at elevated temperatures. Acta Metall. 51, 2905 (2003).Google Scholar
16.Gong, W., Zhang, L., Yaoa, D., and Zhou, C.: Diffusivities and atomic mobilities in fcc Ni–Pt alloys. Scr. Met. 61, 100 (2009).CrossRefGoogle Scholar
17.Liu, Y., Liang, D., Du, Y., Zhang, L., and Yu, D.: Mobilities and diffusivities in fcc Co-X (X = Ag, Au, Cu, Pd and Pt) alloys. Comput. Coupling Phase Diagrams Thermochem. 33, 695 (2009).CrossRefGoogle Scholar
18.Levasseur, J. and Philibert, J.: Determination of intrinsic diffusion coefficients by measuring the Kirkendall effect. J. Phys. Stat. Sol. 21, K1 (1967).Google Scholar
19.Cornet, J.F.: Studies on Kirkendall supplements according to the equations of Darken. J. Phys. Chem. Solids 35, 1247 (1974).CrossRefGoogle Scholar
20.van Loo, F.J.J., Bastin, G.F., and Rieck, G.D.: Market displacement as a result of diffusion in binary metal systems. Sci. Sin. 9, 11 (1979).Google Scholar
21.Predel, B.: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Landolt Börnstein Substance/Property Index, New Series IV/5C, 5I. O. Madelung, ed. (Springer, Berlin, 1993, 1998).Google Scholar
22.Vignes, A. and Birchenall, C.E.: Concentration dependence of the interdiffusion coefficient in binary metallic solid solution. Acta Metall. 16, 1117 (1968).CrossRefGoogle Scholar
23.Kučera, J. and Zemčik, T.: Diffusion of Co-57 in Pt and preparation of the optimum Mossbauer source. Can. Metall. Q. 7, 83 (1968).CrossRefGoogle Scholar
24.van Dal, M.J.H., Pleumeeres, M.C.L.P., Kodenstov, A.A., and van Loo, F.J.J.: Intrinsic diffusion and Kirkendall effect in Ni–Pd and Fe–Pd solid solutions. Acta Metall. 48, 385 (2000).Google Scholar
25.Darken, L.S.: Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. Am. Inst. Min. Engrs. 175, 184 (1948).Google Scholar
26.Manning, J.R.: Diffusion and the Kirkendall shift in binary alloys. Acta Metall. 15, 817 (1967).CrossRefGoogle Scholar
27.Schwerdtfeger, K. and Muan, A.: Activity measurements in Pt-Ni, Pd-Ni and Pd-Co alloys at 1000 °C and 1200 °C. Acta Metall. 13, 509 (1965).CrossRefGoogle Scholar
28.Schwerdtfeger, K. and Muan, A.: Thermodynamic properties of Pt-Co alloys in the temperature range 1200 °C - 1400 °C. Acta Metall. 12, 905 (1964).CrossRefGoogle Scholar
29.Manning, J.R.: Cross terms in the Thermodynamic diffusion equations for multicomponent alloys. Metall. Trans. 1, 499 (1969).CrossRefGoogle Scholar
30.Dayananda, M.A.: Atomic mobilities and vacancy wind effects in multicomponent alloys. Metall. Trans. 2, 334 (1971).CrossRefGoogle Scholar
31.Schmatz, D.J., Domain, H.A., and Aaronson, H.I.: Test of the Manning vacancy-flux correction in α Cu-Zn. J. Appl. Phys. 37, 1741 (1966).CrossRefGoogle Scholar
32.Meyer, R.O.: Pressure and vacancy-flow effects on the Kirkendall shift in silver-gold alloys. Phys. Rev. 181, 1086 (1969).CrossRefGoogle Scholar
33.Kohn, A., Levasseur, J., Philibert, J., and Wanin, M.: Experimental verification of theories of the Kirkendall effect in iron-nickel and iron-cobalt systems. Acta Metall. 18, 163 (1970).CrossRefGoogle Scholar
34.Dallwitz, M.J.: The vacancy-flow effect in silver-gold alloys. Acta Metall. 20, 1229 (1972).CrossRefGoogle Scholar
35.Iorio, N.R., Dayananda, M.A., and Grace, R.E.: Intrinsic diffusion and vacancy wind effects in Ag-Cd alloys. Metall. Trans. 4, 1339 (1973).CrossRefGoogle Scholar
36.Carlson, P.T.: Interdiffusion and intrinsic diffusion in binary vanadium-titanium solid solutions at 1350 °C. Met. Trans. A 7A, 199 (1975).Google Scholar
37.Sohn, Y.H. and Dayananda, M.A.: Interdiffusion, intrinsic diffusion and vacancy wind effect in Fe-Al alloys at 1000 °C. Scr. Met. 40(79), 79 (1999).CrossRefGoogle Scholar
38.Paul, A., Kodentsov, A.A., and van Loo, F.J.J.: On diffusion in the β-NiAl phase. J. Alloys Compd. 403, 147 (2005).CrossRefGoogle Scholar
39.Belova, I.V. and Murch, G.E.: Expressions for vacancy-wind factors occurring in interdiffusion in ternary and higher-order alloys. Acta Metall. 55, 627 (2007).Google Scholar