Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:22:09.093Z Has data issue: false hasContentIssue false

Interface and mechanical behavior of MoSi2-based composites

Published online by Cambridge University Press:  08 February 2011

J-M. Yang
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024–1595
S.M. Jeng
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024–1595
Get access

Abstract

MoSi2-based composites reinforced with particles, whiskers, and continuous fibers were fabricated using hot pressing and hot isostatic pressing techniques. The microstructure, interface compatability, and interfacial properties between the reinforcements and matrix are discussed. The microstructural parameters which control the mechanical behavior of the MoSi2 composites were characterized. The need for developing a satisfactory reinforced MoSi2 composite for high-temperature structural applications is also addressed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schlichting, J., High Temp-High Pressures 10 (3), 241 (1978).Google Scholar
2Wehrmann, R., High Temperature Materials and Technology, edited by Campbell, I. E. and Sherwood, E. M. (John Wiley & Sons, New York, 1967), p. 399.Google Scholar
3Berkowitz-Mattuck, J. B., Rossetti, M., and Lee, D. W., Metall. Trans. 1, 479 (1970).CrossRefGoogle Scholar
4Yang, J-M., Kai, W., and Jeng, S. M., Scripta Metall. 24 (3), 469 (1990).CrossRefGoogle Scholar
5Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68 (8), C–200 (1985).Google Scholar
6Gibbs, W. S., Petrovic, J. J., and Honnell, R. E., Ceram. Eng. Sci. Proc. 8 (7–8), 645 (1987).Google Scholar
7Carter, D. H., Petrovic, J. J., Honnell, R. E., and Gibbs, W. S., Ceram. Eng. Sci. Proc. 10 (9–10), 1121 (1989).Google Scholar
8Carter, D. H. and Hurley, G. F., J. Am. Ceram. Soc. 70 (4), C79 (1987).Google Scholar
9Fitzer, E. and Remmele, W., Proc. 5th Int. Conf. on Composites, edited by Harrigan, W., Strife, J., and Dhingra, A. (ASM, Metals Park, OH, 1984).Google Scholar
10Meschter, P. J. and Schwartz, D. S., J. Metals 41 (11), 52 (1989).Google Scholar
11Lim, C. B., Yano, T., and Iseki, T., J. Mater. Sci. 24, 4144 (1989).Google Scholar
12Rudy, E., in Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Part V, Compendium of Phase Diagram Data, AFML-TR-65–2, 1969.Google Scholar
13Mikata, Y. and Taya, M., J. Comp. Mater. 19, 554 (1985).Google Scholar
14Yang, C. J., Jeng, S. M., and Yang, J-M., Scripta Metall. 24 (3), 469 (1990).CrossRefGoogle Scholar
15Petrovic, J. J. and Honnell, R. E., Ceram. Eng. Sci. Proc. (1990, in press).Google Scholar
16Deve, H. E., Evans, A. G., Odette, G. R., Mehrabian, R., Emiliani, M. L., and Hecht, R. J., Acta Metall. 38 (8), 1491 (1990).Google Scholar
17Fiber Composite Hybrid Material, edited by Hancox, N. L. (MacMillen, New York, 1981).Google Scholar
18Chiang, Y-M., Haggerty, J. S., Messner, R. P., and Demetry, C., Ceram. Bull. 68 (2), 420 (1990).Google Scholar