Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T05:34:08.121Z Has data issue: false hasContentIssue false

Interplay of slip and twinning in niobium single crystals compressed at 77 K

Published online by Cambridge University Press:  13 November 2018

Roman Gröger*
Affiliation:
Institute of Physics of Materials & CEITEC IPM, Academy of Sciences of the Czech Republic, Brno 61600, Czech Republic
Zdeněk Chlup
Affiliation:
Institute of Physics of Materials & CEITEC IPM, Academy of Sciences of the Czech Republic, Brno 61600, Czech Republic
Tereza Kuběnová
Affiliation:
Institute of Physics of Materials & CEITEC IPM, Academy of Sciences of the Czech Republic, Brno 61600, Czech Republic
Ivo Kuběna
Affiliation:
Institute of Physics of Materials & CEITEC IPM, Academy of Sciences of the Czech Republic, Brno 61600, Czech Republic
*
a)Address all correspondence to this author. e-mail: groger@ipm.cz
Get access

Abstract

High-purity niobium single crystals of five different orientations were compressed at 77 K to 2–4% plastic strain to investigate the mechanisms operative in the initial stage of yielding. The crystals deformed in the direction close to the [001] axis exhibit predominant slip on the high-stressed (101) and a much lower stressed $\left( {0\bar{1}1} \right)$ plane. The expected slip on the $\left( {\bar{1}01} \right)$ plane is nearly homogeneously distributed with only a few sharp slip traces corresponding to localized slip. The samples compressed along center-triangle orientations and those close to the $\left[ {011} \right] - \left[ {\bar{1}11} \right]$ edge deform predominantly by twinning on {112}〈111〉 systems with some contribution from slip on the $\left( {\bar{1}01} \right)\left[ {\bar{1}\bar{1}\bar{1}} \right]$ system with the highest Schmid factor. A majority of twins exhibit internal contrast due to alternating slip on $\left( {\bar{1}01} \right)$ and $\left( {0\bar{1}1} \right)$ planes. No slip traces are observed in the matrix adjacent to the twin, which implies that twin boundaries are impenetrable obstacles for the motion of dislocations.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schmid, E. and Boas, W.: Plasticity of Crystals with Special Reference to Metals (F.A. Hughes & Co., London, 1950).Google Scholar
Maddin, R. and Chen, N.K.: Geometrical aspects of the plastic deformation of metal single crystals. Prog. Met. Phys. 5, 53 (1954).CrossRefGoogle Scholar
Votava, E.: Eine neue Methode zur Herstellung verformungsfreier Einkristall-Zugproben hochschmelzender Metalle und einige Ergebnisse über die plastische Deformation von Niob-Einkristallen. Phys. Status Solidi A 5, 421 (1964).CrossRefGoogle Scholar
Duesbery, M.S., Foxall, R.A., and Hirsch, P.B.: The plasticity of pure niobium crystals. J. Phys. Colloq. 27, 193 (1966).CrossRefGoogle Scholar
Reid, C.N., Gilbert, A., and Hahn, G.T.: Twinning, slip and catastrophic flow in niobium. Trans. Metall. Soc. AIME 236, 1024 (1966).Google Scholar
Foxall, R.A., Duesbery, M.S., and Hirsch, P.B.: The deformation of niobium single crystals. Can. J. Phys. 45, 607 (1967).CrossRefGoogle Scholar
Taylor, G. and Christian, J.W.: Experiments on the deformation of niobium single crystals. I. Stress versus strain curves and slip systems in compression and tension. Philos. Mag. 15, 873 (1967).CrossRefGoogle Scholar
Taylor, G. and Christian, J.W.: Experiments on the deformation of niobium single crystals. II. Electron microscope study of dislocation structures. Philos. Mag. A 15, 893 (1967).CrossRefGoogle Scholar
Duesbery, M.S. and Foxall, R.A.: A detailed study of deformation of high-purity niobium single crystals. Philos. Mag. 20, 719 (1969).CrossRefGoogle Scholar
Statham, C.D., Veselý, D., and Christian, J.W.: Slip in single crystals of niobium-molybdenum alloys deformed in compression. Acta Metall. 18, 1243 (1970).CrossRefGoogle Scholar
Bolton, C.J. and Taylor, G.: Anomalous slip in high-purity niobium single crystals deformed at 77 K in tension. Philos. Mag. 26, 1359 (1972).CrossRefGoogle Scholar
Boucher, N.A. and Christian, J.W.: The influence of pre-strain on deformation twinning in niobium single crystals. Acta Metall. 20, 581 (1972).CrossRefGoogle Scholar
Louchet, F. and Kubin, L.P.: Dislocation substructures in the anomalous slip plane of single crystal niobium strained at 50 K. Acta Metall. 23, 17 (1975).CrossRefGoogle Scholar
Garratt-Reed, A.J. and Taylor, G.: Stress-strain curves for niobium crystals defofmed at temperatures below ambient. Philos. Mag. 33, 577 (1976).CrossRefGoogle Scholar
Reed, R.E. and Arsenault, R.J.: Further observations of anomalous slip in niobium single crystals. Scr. Metall. 10, 1003 (1976).CrossRefGoogle Scholar
Garratt-Reed, A.J. and Taylor, G.: Optical and electron microscopy of niobium crystals deformed below room temperature. Philos. Mag. A 39, 597 (1979).CrossRefGoogle Scholar
Nagakawa, J. and Meshii, M.: The deformation of niobium single crystals at temperatures between 77 and 4.2 K. Philos. Mag. A 44, 1165 (1981).CrossRefGoogle Scholar
Wasserbäch, W. and Novák, V.: Optical investigation of anomalous slip-line patterns in high purity niobium and tantalum single crystals after tensile deformation at 77 K. Mater. Sci. Eng. 73, 197 (1985).CrossRefGoogle Scholar
Taylor, G. and Saka, M.: Some observations on slip in niobium and Nb–Ti alloy deformed in situ in a HVEM. Philos. Mag. A 64, 1345 (1991).CrossRefGoogle Scholar
Wasserbäch, W.: Anomalous slip in high-purity niobium and tantalum single crystals. Phys. Status Solidi A 147, 417 (1995).CrossRefGoogle Scholar
McHargue, C.J.: Twinning in columbium. Trans. Metall. Soc. AIME 224, 334 (1962).Google Scholar
Mahajan, S.: Accommodation at deformation twins in bcc crystals. Metall. Trans. A 12, 379 (1981).CrossRefGoogle Scholar
Sleeswyk, A.W.: 1/2〈111〉 screw dislocations and the nucleation of {112}〈111〉 twins in the b.c.c. lattice. Philos. Mag. A 8, 1467 (1963).CrossRefGoogle Scholar
Vitek, V.: Multilayer stacking faults and twins on {211} planes in b.c.c. metals. Scr. Metall. 4, 725 (1970).CrossRefGoogle Scholar
Bristowe, P.D., Crocker, A.G., and Norgett, M.J.: The structure of twin boundaries in body-centred cubic metals. J. Phys. F: Met. Phys. 4, 1859 (1974).CrossRefGoogle Scholar
Ogata, S., Li, J., and Yip, S.: Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102 (2005).CrossRefGoogle Scholar
Ojha, A. and Sehitoglu, H.: Twinning stress prediction in bcc metals and alloys. Philos. Mag. Lett. 94, 647 (2014).CrossRefGoogle Scholar
Marian, J., Cai, W., and Bulatov, V.V.: Dynamic transitions from smooth to rough to twinning in dislocation motion. Nature Mater 3, 158 (2004).CrossRefGoogle ScholarPubMed
Zepeda-Ruiz, L.A., Stukowski, A., Oppelstrup, T., and Bulatov, V.V.: Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492 (2017).CrossRefGoogle ScholarPubMed
Chen, C.Q., Florando, J.N., Kumar, M., Ramesh, K.T., and Hemker, K.J.: Incipient deformation twinning in dynamically sheared bcc tantalum. Acta Mater. 69, 114 (2014).CrossRefGoogle Scholar
Zhang, R.F., Wang, J., Beyerlein, I.J., and Germann, T.C.: Twinning in bcc metals under shock loading: A challenge to empirical potentials. Philos. Mag. Lett. 91, 731 (2011).CrossRefGoogle Scholar
Preston, D.L., Tonks, D.L., and Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93, 211 (2003).CrossRefGoogle Scholar
Ventelon, L., Willaime, F., Clouet, E., and Rodney, D.: Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W. Acta Mater. 61, 3973 (2013).CrossRefGoogle Scholar
Dezerald, L., Ventelon, L., Clouet, E., Denoual, C., Rodney, D., and Willaime, F.: Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 89, 024104 (2014).CrossRefGoogle Scholar
Gröger, R., Chlup, Z., Kuběnová, T., and Kuběna, I.: Deformation twinning in vanadium single crystals tested in compression at 77 K. Mater. Sci. Eng., A. 737, 413 (2018).CrossRefGoogle Scholar
Gröger, R., Chlup, Z., Kuběna, I., and Kruml, T.: Slip activity in molybdenum single crystals compressed at 77 K. Philos. Mag. 98, 2749 (2018).CrossRefGoogle Scholar