Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T19:08:07.470Z Has data issue: false hasContentIssue false

Intrinsic microcrystalline silicon by postgrowth anneals

Published online by Cambridge University Press:  31 January 2011

Jong-Hwan Yoon*
Affiliation:
Department of Physics, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea
Get access

Abstract

Hydrogenated microcrystalline silicon (μc-Si:H) grown by a conventional plasma-enhanced chemical vapor deposition from high hydrogen-diluted silane was annealed by increasing the temperature from 25 to 450 °C at a constant rate of 12 °C/min (one annealing cycle). Dark-conductivity activation energy gradually increases with increasing the number of annealing cycle to a saturation value of about 0.6 eV, observed in truly intrinsic μc-Si:H films. For the saturated state, the dark conductivity of the order of 10−8 S/cm was obtained. Little or no change in the oxygen content was observed after the annealing.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860 (1994).CrossRefGoogle Scholar
2.Fejfar, A., Beck, N., Stuchlíkovaá, H., Wyrsch, N., Torres, P., Meier, J., Shah, A., and Kocka, J., J. Non-Cryst. Solids 227&230, 1006 (1998).CrossRefGoogle Scholar
3.Lucovsky, G., Wang, C., Williams, M.J., Chen, Y.L., and Maher, D.M., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Tsai, C.C., Canham, L.T., Shimizu, I., Aoyagi, Y. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993), p. 443.Google Scholar
4.Wang, C. and Lucovsky, G., Proceeding of 21st IEEE PVSEC (IEEE, New York, 1990), p. 1614.Google Scholar
5.Flückiger, R., Meier, J., Goetz, M., and Shah, A., J. Appl. Phys. 77, 712 (1995).Google Scholar
6.Torres, P., Meier, J., Flückiger, R., Kroll, U., Anna Selvan, J.A., Keppner, H., Shah, A., Littlewood, S.D., Kelly, I.E., and Giannoulés, P., Appl. Phys. Lett. 69, 1373 (1996).CrossRefGoogle Scholar
7.Platz, R. and Wagner, S., Appl. Phys. Lett. 73, 1236 (1998).Google Scholar
8.Bustarret, E., Hachinia, M.A., and Brunel, M., Appl. Phys. Lett. 52, 1675 (1988).CrossRefGoogle Scholar
9.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedure (John Wiley & Sons, New York, 1974).Google Scholar