Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T01:03:51.288Z Has data issue: false hasContentIssue false

Investigation of ordering kinetics in Cu3Au with the tomographic atom probe

Published online by Cambridge University Press:  31 January 2011

S. Duval
Affiliation:
Groupe de Métallurgie Physique, UMR CNRS 6634, Université de Rouen, F-76821, Mont Saint Aignan Cedex, France
S. Chambreland
Affiliation:
Groupe de Métallurgie Physique, UMR CNRS 6634, Université de Rouen, F-76821, Mont Saint Aignan Cedex, France
A. Loiseau
Affiliation:
Laboratoire de Physique du Solide/ONERA, BP 72, F-92322 Châtillon Cedex, France
D. Blavette*
Affiliation:
Groupe de Métallurgie Physique, UMR CNRS 6634, Universitée de Rouen, F-76821, Mont Saint Aignan Cedex, France
*
a) Address correspondence to this author.didier.blavette@univrouen.fr
Get access

Abstract

Kinetics of congruent ordering in Cu3Au at 350 °C was investigated by means of a three-dimensional atom probe. This instrument, called a Tomographic Atom Probe (TAP), enables atomic resolution images of a small volume (10 × 10 × 100 nm3) of the material reconstructed in the three dimensions of space. The time evolution of ordered domains at 350 °C shows that a t1/2 law is followed as soon as 5 min. For this aging time, the nucleus diameter is close to 1.7 nm. This scaling law was observed even before domains came into contact (t = 50 min). Competitive growth was observed to start as soon as 5 min. The number density was observed to decrease rapidly up to t = 50 min. A slower decrease was observed when domains begin to impinge. Experimental conditions and requirements as well as advantages of TAP as compared to HREM for the study of ordering are discussed in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gunton, J. D., Miguel, M. San, and Sahni, P. S., in Phase Transitions and Critical Phenomena, edited by Comb, C. and Lebowitz, J. (Academic Press, New York, 1983), p. 267.Google Scholar
2.Langer, J. S., in Solids Far from Equilibrium, edited by Godrèche, C. (Cambridge University Press, Cambridge, 1992), p. 297.Google Scholar
3.Binder, K., Rep. Prog. Phys. 50, 783 (1987).Google Scholar
4.Binder, K., in Materials Science and Technology, edited by Haasen, P. (VCH, Weinheim, Germany, 1991), Vol. 5, p. 405.Google Scholar
5.Bray, A. J., Adv. Phys. 43, 357 (1994).Google Scholar
6.Chakraborty, B. and Xi, Z., Phys. Rev. B 53, 5063 (1996).Google Scholar
7.Shannon, R. F., Nagler, S. E., and Harkless, C. R., Phys. Rev. B 46, 40 (1992).Google Scholar
8.Phani, M. K., Lebowitz, J. L., Kalos, M. H., and Penrose, O., Phys. Rev. Lett. 45, 366 (1980).Google Scholar
9.Khachaturyan, A. G., Lindsey, T. F., and Morris, J. W., Metall. Trans. 19A, 249 (1988).Google Scholar
10.Khachaturyan, A. G., Wang, Y., and Wang, H. Y., Materials Science Forum (Trans. Tech. Pub., Aedermannsdorf, 1994), Vols. 155–156, p. 345.Google Scholar
11.Wang, H. Y., Chen, L-Q., and Khachaturyan, A. G., in Solid-Solid Phase Transformations, edited by Johnson, W. C., Howe, J. M., Laughlin, D. E., and Soffa, W. A. (The M.M.M. Society, Warrendale, PA, 1994), p. 245.Google Scholar
12.Lai, Z-W., Phys. Rev. B 41, 9239 (1990).Google Scholar
13.Frontera, C., Vives, E., Castán, T., and Planes, A., Phys. Rev. B (1997, in press).Google Scholar
14.Stanley, H. E., in Introduction to Phase Transitions and Critical Phenomena, edited by Marshall, W. and Wilkinson, D. H. (Oxford University Press, New York, 1971).Google Scholar
15.Mouritsen, O. G., Int. J. Mod. Phys. B 4, 1925 (1990).Google Scholar
16.Allen, S. M. and Cahn, J. W., Acta Metall. 27, 1085 (1979).Google Scholar
17.Ludwig, K. F., Stephenson, G. B., Jordan-Sweet, Mainville, J., Yang, Y. S., and Sutton, M., Phys. Rev. Lett. 61, 1859 (1988).Google Scholar
18.Sakai, M. and Mikkola, D. E., Metall. Trans. 2, 1635 (1971).Google Scholar
19.Morris, D. G., Besag, F. M. C., and Smallman, R. E., Philos. Mag. 29, 43 (1971).Google Scholar
20.Schmitz, G., Hono, K., and Haasen, P., Acta Metall. Mater. 42, 201 (1994).Google Scholar
21.Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B., and Menand, A., Nature (London) 363, 432 (1993).Google Scholar
22.Blavette, D., Deconihout, B., Bostel, A., Sarrau, J. M., Bouet, M., and Menand, A., Rev. Sci. Instrum. 64, 10 (1993).Google Scholar
23.Blavette, D., Deconihout, B., A Bostel, Sarrau, J. M., and Menand, A., C. R. Acad. Sci. Paris 317, 1279 (1993).Google Scholar
24.Deconihout, B., Chambreland, S., and Blavette, D., Adv. Mater. 6, 695 (1994).Google Scholar
25.Letellier, L., Guttmann, M., and Blavette, D., Philos. Mag. Lett. 70, 189 (1994).Google Scholar
26.Danoix, F., Deconihout, B., Bostel, A., and Blavette, D., J. Phys. IV, Colloque C3 5, 237 (1995).Google Scholar
27.Marcinkowski, M. H. and Brown, N., J. Appl. Phys. 32, 375 (1961).Google Scholar
28.Poquette, G. E. and Mikkola, D. E., Trans. TMS AIME 245, 743 (1969).Google Scholar
29.Bley, F. and Fayard, M., Acta Metall. 27, 1085 (1970).Google Scholar
30.Hashimoto, T., Nishimura, K., and Takeuchi, Y., Phys. Rev. Lett. 65, 250 (1978).Google Scholar
31.Cahn, J., Acta Metall. 35, 2753 (1987).Google Scholar
32.Noda, Y., Nishihara, S., and Yamada, Y., J. Phys. Soc. Jpn. 53, 364, (1954)Google Scholar
33.Nagler, S. E., Shannon, R. F., Harkless, C. R., and Singh, M. A., Phys. Rev. Lett. 61, 718 (1988).Google Scholar
34.Warren, B., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
35.Chen, H. and Cohen, J. B., Acta Metall. 27, 603 (1979).Google Scholar
36.Ducastelle, F., Order and Phase Stability in Alloys (North-Holland, Amsterdam, 1991).Google Scholar
37.Fisher, R. M. and Marcinkowski, M. J., Philos. Mag. 6, 1385 (1961).Google Scholar
38.Potez, L. and Loiseau, A., Interface Sci. 2, 91 (1994).Google Scholar
39.Kikuchi, R. and Cahn, J. W., Acta. Metall. 2, 1337 (1979).Google Scholar
40.Reinhart, L. and Moss, S. C., Ultramicros. 52, 223 (1993).Google Scholar
41.Duval, S., Chambreland, S., Blavette, D., Loiseau, A., and Potez, L., Appl. Surf. Sci. 87–88, 284 (1995).Google Scholar
42.Miller, M. K. and Smith, G. D. W., Atom-Probe Microanalysis: Principles and Applications to Materials Problems (Materials Research Society, Pittsburgh, PA, 1989).Google Scholar
43.Bas, P., Bostel, A., Deconihout, B., and Blavette, D., Appl. Surf. Sci. 87/88(1995).Google Scholar
44.Duval, S., Thesis, University of Rouen, France (1996).Google Scholar
45.Blavette, D. and Bostel, A., Acta. Metall. 32, 811 (1984).Google Scholar
46.Bas, P., Bostel, A., Grancher, G., Deconihout, B., and Blavette, D., Appl. Surf. Sci. 94/95, 442 (1996).Google Scholar
47.Duval, S., Chambreland, S., and Deconihout, B., Appl. Surf. Sci. 94/95, 449 (1996).Google Scholar
48.Wada, M., Uemori, R., and Nishikawa, O., Surf. Sci. 134, 17 (1983).Google Scholar