Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T07:48:34.040Z Has data issue: false hasContentIssue false

Investigation of silicon nanoclusters embedded in ZnO matrices deposited by cosputtering system

Published online by Cambridge University Press:  31 January 2011

Li-Wen Lai
Affiliation:
Institute of Microelectronics, Department of Electrical Engineering and Center for Micro/Nano Science and Technology, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Chih-Hong Liu
Affiliation:
Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Ching-Ting Lee*
Affiliation:
Institute of Microelectronics, Department of Electrical Engineering and Center for Micro/Nano Science and Technology, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Li-Ren Lou
Affiliation:
Institute of Microelectronics, Department of Electrical Engineering and Center for Micro/Nano Science and Technology, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Wen-Yung Yeh
Affiliation:
Optoelectronics Semiconductor and System Application Div., Industrial Technology Research Institute, 310 Hsin Chu, Taiwan, Republic of China
Mu-Tao Chu
Affiliation:
Optoelectronics Semiconductor and System Application Div., Industrial Technology Research Institute, 310 Hsin Chu, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: ctlee@ee.ncku.edu.tw
Get access

Abstract

A co-sputtering system was used to deposit silicon nanoclusters embedded in zinc oxide matrix (Si:ZnO) at low temperature without post-annealing. By adjusting the radio frequency power of the Si target during co-sputtering, Si:ZnO films with various crystallographic structures can be obtained. Silicon nanoclusters embedded in the zinc oxide matrix were examined using a high-resolution transmission electron microscope, x-ray diffractometer, and Fourier transformation infrared spectrometry. By comparing with photoluminescence spectra, we can clearly identify quantum confinement effect of silicon nanoclusters embedded in the ZnO matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Irrera, A., Iacona, F., Crupi, I., Presti, C.D., Franzo, G., Bongiorno, C., Sanfilippo, D., Stefano, G.D., Piana, A., Fallica, P.G., Canino, A.Priolo, F.: Electroluminescence and transport properties in amorphous silicon nanostructures. Nanotechnol. 17, 1428 2006CrossRefGoogle Scholar
2Park, N.M., Kim, T.S.Park, S.J.: Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78, 2575 2001CrossRefGoogle Scholar
3Tsai, T.C., Yu, L.Z.Lee, C.T.: Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature. Nanotechnol. 18, 275707 2007CrossRefGoogle Scholar
4Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M.Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 2003CrossRefGoogle ScholarPubMed
5Koike, K., Nakashima, I., Hashimoto, K., Sasa, S., Inoue, M.Yano, M.: Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy. Appl. Phys. Lett. 87, 112106 2001CrossRefGoogle Scholar
6Yu, Q.X., Xu, B., Wu, Q.H., Liao, Y., Wang, G.Z., Fang, R.C., Lee, H.Y.Lee, C.T.: Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett. 83, 4713 2003CrossRefGoogle Scholar
7Look, D.C., Claflin, B., Alivov, Y.I.Park, S.J.: The future of ZnO light emitters. Phys. Status Solidi A 201, 2203 2004CrossRefGoogle Scholar
8Chuang, R.W., Wu, R.X., Lai, L.W.Lee, C.T.: ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique. Appl. Phys. Lett. 91, 231113 2007CrossRefGoogle Scholar
9Minami, T., Sato, H., Nanto, H.Takata, S.: High conductive and transparent silicon doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 25, L776 1986CrossRefGoogle Scholar
10Choi, B.H.Im, H.B.: Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering. Thin Solid Films 193, 712 1990CrossRefGoogle Scholar
11Nagamori, M., Boivin, J.A.Claveau, A.: Gibbs free energies of formation of amorphous Si2O3, SiO and Si2O. J. Non-Cryst. Solids 189, 270 1995CrossRefGoogle Scholar
12Kim, K.K., Tampo, H., Song, J.O., Seong, T.Y., Park, S.J., Lee, J.M., Kim, S.W., Fujita, S.Niki, S.: Effect of rapid thermal annealing on Al doped n-ZnO films grown by RF-magnetron sputtering. Jpn. J. Appl. Phys. 44, 4776 2005CrossRefGoogle Scholar
13Xiu, F., Yang, Z., Zhao, D., Liu, J., Alim, K.A., Balandin, A.A., Itkis, M.E.Haddon, R.C.: ZnO growth on Si with low-temperature ZnO buffer layers by ECR-assisted MBE. J. Cryst. Growth 286, 61 2006CrossRefGoogle Scholar
14Zhang, S., Zhang, W.Yuan, J.: The preparation of photoluminescent Si nanocrystal-SiOX films by reactive evaporation. Thin Solid Films 326, 92 1998CrossRefGoogle Scholar
15Vijayalakshmia, S., Iqbalb, Z., Georgec, M.A., Federicid, J.Grebela, H.: Characterization of laser ablated silicon thin films. Thin Solid Films 339, 102 1999CrossRefGoogle Scholar
16Honda, Y., Shida, S., Goda, K.Nagata, T.: Structure and optical properties of light-emitting Si films fabricated by neutral cluster deposition and subsequent high-temperature annealing. J. Non-Cryst. Solids 352, 2109 2006CrossRefGoogle Scholar
17Wang, Z., Zhang, H., Zhang, L., Yuan, J., Yan, S.Wang, C.: Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnol. 14, 11 2003CrossRefGoogle Scholar
18Kumar, V.V.S., Singh, F., Kumar, A.Avasthi, D.K.: Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing. Nucl. Instrum. Methods 244, 91 2006CrossRefGoogle Scholar
19Tsai, C., Li, K.H., Kinosky, D.S., Qian, R.Z., Hsu, T.C., Irby, J.T., Banerjee, S.K., Tasch, A.F.Campbell, J.C.: Correlation between silicon hydride species and the photoluminescence intensity of porous silicon. Appl. Phys. Lett. 60, 1700 1992CrossRefGoogle Scholar
20Siu, G.G., Wu, X.L., Gu, Y.Bao, X.M.: Enhanced and stable photoluminescence from partially oxidized porous Si coated with Si thin films. J. Appl. Phys. 88, 3781 2000CrossRefGoogle Scholar
21Dan, L.Wua, X.L.: Optical emission from SiOx nanoparticles irradiated by ultraviolet ozone. J. Appl. Phys. 94, 7288 2003CrossRefGoogle Scholar
22Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F.Tay, B.K.: Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94, 354 2003CrossRefGoogle Scholar
23Zhao, J.L., Sun, X.W., Tan, S.T., Lo, G.Q., Kwong, D.L.Cen, Z.H.: Realization of n-Zn1−xMgxO/i-ZnO/SiOx/n +-Si heterostructured n-i-n light-emitting diodes by low-cost ultrasonic spray pyrolysis. Appl. Phys. Lett. 91, 263501 2007CrossRefGoogle Scholar
24Vanheusden, K., Seager, C.H., Warren, W.L., Tallant, D.R.Voigt, J.A.: Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403 1996CrossRefGoogle Scholar
25Studenikin, S.A., Golego, N.Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 1998CrossRefGoogle Scholar
26Wang, X.X., Zhang, J.G., Ding, L., Cheng, B.W., Ge, W.K., Yu, J.Z.Wang, Q.M.: Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys. Rev. B 72, 195313 2005CrossRefGoogle Scholar
27Kim, T.W., Cho, C.H., Kim, B.H.Park, S.J.: Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 88, 123102 2006CrossRefGoogle Scholar
28Kim, T.Y., Park, N.M., Kim, K.H., Sung, G.Y., Ok, Y.W., Seong, T.Y.Choi, C.J.: Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 85, 5355 2004CrossRefGoogle Scholar