Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T09:14:52.286Z Has data issue: false hasContentIssue false

Ion-beam-induced aggregation in polystyrene: The influence of the molecular parameters

Published online by Cambridge University Press:  31 January 2011

Orazio Puglisi
Affiliation:
Dipartimento di Scienze Chimiche, viale A. Doria 6, 95125 Catania, Italy
Antonino Licciardello
Affiliation:
Dipartimento di Scienze Chimiche, viale A. Doria 6, 95125 Catania, Italy
Lucia Calcagno
Affiliation:
Dipartimento di Fisica, corso Italia 57, 95100 Catania, Italy
Gaetano Foti
Affiliation:
Dipartimento di Fisica, corso Italia 57, 95100 Catania, Italy
Get access

Abstract

The formation of an insoluble gel under ion-beam bombardment is governed by ion-beam parameters and target parameters. Here reported is a study of the influence of the target molecular parameters on the sol–gel transition of ion-bombarded polystyrene with particular emphasis for the number-average molecular weight $\overline M$n. It is shown that the main parameter is the number of macromolecules of the film so that by adopting a “corrected” fluence F/n (ions per macromolecule), the different curves of the various polymers collapse in only one universal curve. The importance of the “corrected” fluence is shown also at molecular level and the MWD of the various polymers is similar at equal F/n values. An experimental model is outlined which explains the sol–gel transition on the basis of transition from an isolated-track regime to an overlap regime where the formation of insoluble giant macromolecules occurs.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987), p. 301.Google Scholar
2Brown, W. L., in Ref. 1, p. 380.Google Scholar
3Puglisi, O., Marletta, G., Pignataro, S., Foti, G., Trovato, A., and Rimini, E., Chem. Phys. Lett. 78, 207 (1981).CrossRefGoogle Scholar
4Puglisi, O., Marietta, G., Pignataro, S., and Foti, G., Chem. Phys. 75, 417 (1983).CrossRefGoogle Scholar
5Licciardello, A., Puglisi, O., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B 19/20, 903 (1987).CrossRefGoogle Scholar
6Willson, C. G., in Introduction to Microlithography, edited by Thompson, L. F., Willson, C. G., and Bowden, M. J., Symp, A. C. S.. Series 219 (ACS, Washington, DC, 1983), p. 88.CrossRefGoogle Scholar
7Licciardello, A., Puglisi, O., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B 32, 131 (1988).CrossRefGoogle Scholar
8Calcagno, L., Foti, G., Licciardello, A, and Puglisi, O., Appl. Phys. Lett. 51, 907 (1987).CrossRefGoogle Scholar
9Puglisi, O., Licciardello, A., Calcagno, L., and Foti, G., Nucl. Instrum. Methods B 19/20, 865 (1987).CrossRefGoogle Scholar
10Lai, J. H. and Shepard, L. T., J. Electrochem. Soc. 126, 696 (1979).CrossRefGoogle Scholar
11Choong, H. S. and Kahn, F. J., J. Vac. Sci. Technol. 19, 1121 (1981).CrossRefGoogle Scholar
12Ryssel, H., Haberger, K., and Kranz, H., J. Vac. Sci. Technol. 19, 1358 (1981).CrossRefGoogle Scholar
13Hall, T. M., Wagner, A., and Thompson, L. F., J. Vac. Sci. Technol. 16, 1889 (1979).CrossRefGoogle Scholar
14Inokuti, M., J. Chem. Phys. 38, 2999 (1963).CrossRefGoogle Scholar
15Reich, L. and Stivala, S. in Elements of Polymers Degradation (McGraw-Hill, New York, 1971), p. 38.Google Scholar