Published online by Cambridge University Press: 31 January 2011
The aim of the work described in the present paper was to investigate the microstructural stability during annealing treatments of a Fe–Al alloy obtained by melt spinning. To this purpose internal friction (IF) and dynamic modulus (Md) measurements were employed, and the results correlated with x-ray diffraction, optical microscopy, and scanning and transmission electron microscopy observations. In particular, the B2-ordered Fe–38A1–2Cr–0.015C–0.003B (in at.%) alloy was studied during repeated heating runs from room temperature to 823 K by IF and Md. The modulus exhibited a broad maximum (in the range of 600–800 K) only in the first run. On the basis of transmission electron microscopy and x-ray diffraction analysis, the irreversible transformation was explained by considering a two-stage process that occurs when vacancies in supersaturation move toward dislocations. The first stage is connected to dislocation locking; the second one is due to annihilation of some vacancies by dislocation climb.