Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T19:11:34.685Z Has data issue: false hasContentIssue false

Kinetic and structural studies of oxygen availability of the mixed oxides Pr1–xMxOy (M = Ce, Zr)

Published online by Cambridge University Press:  31 January 2011

M. Yu. Sinev
Affiliation:
Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 117334, Russia
G. W. Graham
Affiliation:
Ford Research Laboratory, MD3179/SRL, P.O. Box 2053, Dearborn, Michigan 48121–2053
L. P. Haack
Affiliation:
Ford Research Laboratory, MD3179/SRL, P.O. Box 2053, Dearborn, Michigan 48121–2053
M. Shelef
Affiliation:
Ford Research Laboratory, MD3179/SRL, P.O. Box 2053, Dearborn, Michigan 48121–2053
Get access

Abstract

One composition of Pr–Ce mixed oxide and a range of compositions of Pr–Zr mixed oxide were prepared by coprecipitation methods and characterized by x-ray powder diffraction, thermogravimetric analysis, and x-ray photoelectron spectroscopy. Based on phases formed, the PrOy—ZrO2 system in an oxygen-containing atmosphere at moderate temperatures (up to 800–1000 °C) is analogous to that of CeO2–ZrO2. Addition of either Ce or Zr to pure Pr oxide affects both the total amount of oxygen that can be reversibly exchanged between oxide and gas phase and the kinetics of the redox processes. Ce dramatically increases the amount (per Pr atom) and lowers the temperature of exchange, Zr slightly decreases the amount and also lowers the temperature of exchange, and both modifiers speed up the rate. These observations are rationalized in terms of bulk and surface structural features of the mixed oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gandhi, H. S., Piken, A. G., Shelef, M., and Delosh, R. G., SAE 760201, 55 (1976).Google Scholar
2.Yao, H. C. and Yu Yao, Y. F., J. Catal. 86, 254 (1984).CrossRefGoogle Scholar
3.Su, E. C. and Rothschild, W. G., J. Catal. 99, 506 (1986).CrossRefGoogle Scholar
4.Ozawa, M. and Kimura, M., J. Mater. Sci. Lett. 9, 291 (1990).CrossRefGoogle Scholar
5.Keulks, G. W., J. Catal. 19, 232 (1970).CrossRefGoogle Scholar
6.Thorsteinson, E. M., Wilson, T. P., Young, F. G., and Kasai, P. H., J. Catal. 52, 116 (1978).CrossRefGoogle Scholar
7.Gaffney, A. M., Jones, C. A., Leonard, J.L., and Sofranko, J.A., J. Catal. 114, 422 (1988).CrossRefGoogle Scholar
8.Sinev, M. Yu., Bychkov, V. Yu., Korchak, V. N., and Krylov, O. V., Catal. Today 6, 543 (1990).CrossRefGoogle Scholar
9.Mullhaupt, J. T. and Waldwick, N. J., U.S. Patent 3 980763 (1976).Google Scholar
10.Jones, J. A. and Blue, G. D., J. Spacecraft 25, 202 (1988).CrossRefGoogle Scholar
11.Gmelin Handbook of Inorganic Chemistry, Part D 4. Sc, Y, La-Lu Rare Earth Elements, 8th ed., edited by Moeller, T. (SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1986).Google Scholar
12.Levin, E. M., Robbins, C. R., and McMurdie, H.F., Phase Diagrams for Ceramists, edited by Reser, M. K. (The American Ceramic Society, Westerville, OH, 1964), and later supplements.Google Scholar
13.Burnham, D. A., Eyring, L., and Kordis, J., J. Phys. Chem. 72, 4424 (1968).CrossRefGoogle Scholar
14.Kordis, J. and Eyring, L., J. Phys. Chem. 72, 2030 (1968).CrossRefGoogle Scholar
15.Kordis, J. and Eyring, L., J. Phys. Chem. 72, 2044 (1968).CrossRefGoogle Scholar
16.Miki, T., Ogawa, T., Haneda, M., Kakuta, N., Ueno, A., Tateishi, S., Matsuura, S., and Sato, M., J. Phys. Chem. 94, 5464 (1990).CrossRefGoogle Scholar
17.Logan, A. D. and Shelef, M., J. Mater. Res. 9, 468 (1994).CrossRefGoogle Scholar
18.McBride, J. R., Hass, K. C., Poindexter, B.D., and Weber, W. H., J. Appl. Phys. 76, 2435 (1994).CrossRefGoogle Scholar
19.Fornasiero, P., Di Monte, R., Ranga Rao, G., Kaspar, J., Meriani, S., Trovarelli, A., and Graziani, M., J. Catal. 151, 168 (1995).CrossRefGoogle Scholar
20.Handbook of Chemistry and Physics, edited by Lade, D. R., 75th ed. (CRC Press, Boca Raton, FL, 19941995).Google Scholar
21.Bryson, C. E. III, Surf. Sci. 189/190, 50 (1987).CrossRefGoogle Scholar
22.Scofield, J.H., Electron, J.Spectros. Relat. Phenom. 8, 129 (1976).CrossRefGoogle Scholar
23.Haack, L. P., deVries, J. E., Otto, K., and Chattha, M. S., Appl. Catal. A: General 82, 199 (1992).CrossRefGoogle Scholar
24.Gartsman, K. G., Kartenko, N. F., Melekh, B. T., Nikitin, S. V., Smirnov, I.A., Filin, Yu. N., Sharenkova, N. V., Shunaev, A. T., Khel'mer, B. Yu., and Ovsyannikov, F. M., Fiz. Tverd. Tela (Leningrad) [Sov. Solid State Physics] 32, 1868 (1990).Google Scholar
25.Yang, Y. and Yang, R., Chem. J. Chinese Univ. 13, 877 (1992).Google Scholar
26.Ftikos, Ch., Nauer, M., and Steele, B. C. H., J. Eur. Ceram. Soc. 12, 267 (1993).CrossRefGoogle Scholar
27.Sovestnov, A. E., Shaburov, V. A., Melekh, B. T., Smirnov, I.A., Smirnov, Yu. P., Tyunis, A. V., and Egorov, A. I., Phys. Solid State 36, 620 (1994).Google Scholar
28.An Introduction to Thermogravimetry, 2nd ed., edited by Keattch, C. J. and Dollimore, D. (Heyden and Son Ltd., 1969), p. 65.Google Scholar
29.Bianconi, A., Kontani, A., Okada, K., Giorgi, R., Gargano, A., Marcelli, A., and Miyahara, T., Phys. Rev. B 38, 3433 (1988).CrossRefGoogle Scholar
30.Ogasawara, H., Kontani, A., Potze, R., Sawatzky, G. A., and Thole, B. T., Phys. Rev. B 44, 5465 (1991).CrossRefGoogle Scholar
31.Fujimori, A. J., Magn. Magn. Mater. 47/48, 243 (1985).CrossRefGoogle Scholar
32.Dole, S. L. and Hunter, O. Jr., J. Am. Ceram. Soc. 66, C47 (1983).CrossRefGoogle Scholar
33.Li, P., Chen, I-W., and Penner-Hahn, J. E., J. Am. Ceram. Soc. 77, 118 (1994).CrossRefGoogle Scholar
34.Takasu, Y., Sugino, T., and Matsuda, Y., J. Appl. Electrochem. 14, 79 (1984).CrossRefGoogle Scholar
35.Burnham, D. A. and Eyring, L., J. Phys. Chem. 72, 4415 (1968).CrossRefGoogle Scholar
36.Takasu, Y., Matsui, M., and Matsuda, Y., J. Catal. 98, 568 (1986).CrossRefGoogle Scholar