Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T09:26:40.820Z Has data issue: false hasContentIssue false

Kinetic mechanism of TiO2 nanocarving via reaction with hydrogen gas

Published online by Cambridge University Press:  01 July 2006

Sehoon Yoo
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Suliman A. Dregia
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Sheikh A. Akbar*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Helene Rick
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Kenneth H. Sandhage
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
*
b)Address all correspondence to this author. e-mail: akbar.1@osu.edu
Get access

Abstract

Dense polycrystalline titania (TiO2, rutile) was converted into oriented arrays of single-crystal titania nanofibers by reaction with a noncombustible, hydrogen-bearing gas mixture at only 680–780 °C. Such nanofiber formation resulted from anisotropic etching (“nanocarving”) of the titania grains. The fibers possessed diameters of 20–50 nm and lengths of up to several microns, with the long fiber axes oriented parallel to the [001] crystallographic direction of rutile. Mass spectroscopy and inductively coupled plasma spectroscopy indicated that oxygen, but not titanium, was removed from the specimen during the reaction with hydrogen. The removal of substantial oxygen and solid volume from the reacting surfaces, without an appreciable change in the Ti:O ratio at such surfaces, was consistent with the solid-state diffusion of titanium cations from the surface into the bulk of the specimen. The reaction-induced weight loss followed a parabolic rate law, which was also consistent with a solid-state diffusion-controlled process.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Michailowski, A., Almawlawi, D., Cheng, G., Moskovits, M.: Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem. Phys. Lett. 349, 1 (2001).CrossRefGoogle Scholar
2.Li, D., Xia, Y.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933 (2004).CrossRefGoogle Scholar
3.Yoo, S., Akbar, S.A., Sandhage, K.H.: Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas. Adv. Mater. 16, 260 (2004).CrossRefGoogle Scholar
4.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C.: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
5.Li, D., Xia, Y.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555 (2003).CrossRefGoogle Scholar
6.Wu, J-J., Yu, C-C.: Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004).CrossRefGoogle Scholar
7. Powder Diffraction File Card No. 21-1276 (International Centre for Diffraction Data, Newton Square, PA, 1981).Google Scholar
8. Annual Book of ASTM Standards, Vol. 03.01 (ASTM International, West Conshohocken, PA, 2004).Google Scholar
9.Barin, I.: Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1995).CrossRefGoogle Scholar
10.Diebold, U., Li, M., Dulub, O., Hebenstreit, E.L.D., Hebenstreit, W.: The relationship between bulk and surface properties of rutile TiO2(110). Surf. Rev. Lett. 7, 613 (2000).CrossRefGoogle Scholar
11.Yoo, S., Akbar, S.A., Sandhage, K.H.: Nanocarving of titania (TiO2): A novel approach for fabricating chemical sensing platform. Ceram. Int. 30, 1121 (2004).CrossRefGoogle Scholar
12.Jech, C., Kelly, R.: Studies on bombardment-induced disorder. I. Gas-release study of the annealing of bombardment-induced disorder. J. Phys. Chem. Solids 30, 465 (1969).CrossRefGoogle Scholar
13.Lusvardi, V.S., Barteau, M.A., Chen, J.G., Eng, J. Jr. Fruhberger, B., Teplyakov, A.: A NEXAFS investigation of the reduction and reoxidation of TiO2(001). Surf. Sci. 397, 237 (1998).CrossRefGoogle Scholar
14.Tait, R.H., Kasowski, R.V.: Ultraviolet photoemission and low-energy electron diffraction studies of titanium dioxide (rutile) (001) and (110) surfaces. Phys. Rev. B 20, 5178 (1979).CrossRefGoogle Scholar
15.Chung, Y.W., Lo, W.J., Somorjai, G.A.: Low energy electron diffraction and electron spectroscopy studies of the clean (110) and (100) titanium dioxide (rutile) crystal surfaces. Surf. Sci. 64, 588 (1977).CrossRefGoogle Scholar
16.Henrich, V.E., Dresselhaus, G., Zeiger, H.J.: Observation of two-dimensional phases associated with defect states on the surface of titanium dioxide. Phys. Rev. Lett. 36, 1335 (1976).CrossRefGoogle Scholar
17.Lo, W.J., Chung, Y.W., Somorjai, G.A.: Electron spectroscopy studies of the chemisorption of oxygen, hydrogen and water on the titanium dioxide (100) surfaces with varied stoichiometry: Evidence for the photogeneration of titanium(3+) and for its importance in chemisorption. Surf. Sci. 71, 199 (1978).Google Scholar
18.Henderson, M.A.: A surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 419, 174 (1999).CrossRefGoogle Scholar
19.Tannhauser, D.S.: Experimental evidence from conductivity measurements for interstitial titanium in reduced TiO2. Solid State Comm. 1, 223 (1963).CrossRefGoogle Scholar
20.Venkatu, D.A., Poteat, L.E.: Diffusion of titanium in single crystal rutile. Mater. Sci. Eng. 5, 258 (1970).CrossRefGoogle Scholar
21.Neild, D.J., Wise, P.J., Barnes, D.G.: Measurement of oxygen-18 concentration profiles using resonant nuclear reactions. J. Phys. D 5, 2292 (1972).CrossRefGoogle Scholar
22.Hoshino, K., Peterson, N.L., Wiley, C.L.: Diffusion and point defects in nonstoichiometric rutile (TiO2−x). J. Phys. Chem. Solids 46, 1397 (1985).CrossRefGoogle Scholar
23.Derry, D.J., Lees, D.G., Calvert, J.M.: A study of oxygen self-diffusion in the C-direction of rutile using a nuclear technique. J. Phys. Chem. Solids 42, 57 (1981).CrossRefGoogle Scholar
24.Arita, M., Hosoya, M., Kobayashi, M., Someno, M.: Depth profile measurement by secondary ion mass spectrometry for determining the tracer diffusivity of oxygen in rutile. J. Am. Ceram. Soc. 62, 443 (1979).CrossRefGoogle Scholar
25.Akse, J.R., Whitehurst, H.B.: Diffusion of titanium in slightly reduced rutile. J. Phys. Chem. Solids 39, 457 (1978).CrossRefGoogle Scholar
26.Kolem, H., Kanert, O.: Nuclear magnetic resonance study of defect motion and cation diffusion in single crystal rutile (TiO2−x). Z. Metallkde. 80, 227 (1989).Google Scholar
27.Rekoske, J.E., Barteau, M.A.: Isothermal reduction kinetics of titanium dioxide-based materials. J. Phys. Chem. B 101, 1113 (1997).CrossRefGoogle Scholar
28.Shewmon, P.: Diffusion in Solids (TMS, Warrendale, PA, 1989).Google Scholar
29.Zajonz, H., Meyerheim, H.L., Gloege, T., Moritz, W., Wolf, D.: Surface x-ray structure analysis of the TiO2(100)-(1*3) reconstruction. Surf. Sci. 398, 369 (1998).CrossRefGoogle Scholar
30.Stone, P., Bennett, R. A. and Bowker, M.: Reactive re-oxidation of reduced TiO2(110) surfaces demonstrated by high temperature STM movies. New J. Phys. 1, 8 (1999).CrossRefGoogle Scholar
31.Li, M., Hebenstreit, W., Gross, L., Diebold, U., Henderson, M.A., Jennison, D.R., Schultz, P.A., Sears, M.P.: Oxygen-induced restructuring of the TiO2(110) surface: A comprehensive study. Surf. Sci. 437, 173 (1999).CrossRefGoogle Scholar
32.Bennett, R.A., Stone, P., Price, N.J., Bowker, M.: Two (1*2) reconstructions of TiO2(110): Surface rearrangement and reactivity studied using elevated temperature scanning tunneling microscopy. Phys. Rev. Lett. 82, 3831 (1999).CrossRefGoogle Scholar
33.Onishi, H., Iwasawa, Y.: Dynamic visualization of a metal oxide surface/gas-phase reaction: Time-resolved observation by scanning tunneling microscopy at 800 K. Phys. Rev. Lett. 76, 791 (1996).CrossRefGoogle ScholarPubMed
34.Onishi, H., Iwasawa, Y.: Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surf. Sci. 313, L783 (1994).CrossRefGoogle Scholar