Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T08:21:10.517Z Has data issue: false hasContentIssue false

La2CuO4+δ: Synthesis under high oxygen pressure and study of phase relations and energetics

Published online by Cambridge University Press:  03 March 2011

R.P. Rapp*
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544–1003
A. Mehta
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544–1003
J. DiCarlo
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544–1003
A. Navrotsky*
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544–1003
*
a)Also at the Center for High Pressure Research, an NSF Science and Technology Center, Princeton University, Princeton, New Jersey 08544–1003.
a)Also at the Center for High Pressure Research, an NSF Science and Technology Center, Princeton University, Princeton, New Jersey 08544–1003.
Get access

Abstract

High oxygen pressures have been achieved in a piston-cylinder apparatus using a double capsule assembly consisting of a sealed outer Au capsule, containing an oxygen source (KMnO4), and an inner, open Pt capsule containing the sample. Using this technique, La2CuO4 was annealed at 800 °C, 5–25 kbar for 2–4 h. Transposed temperature drop calorimetry at 704 °C was used to determine the enthalpy of oxidation, and weight loss measurements characterized the oxygen nonstoichiometry, δ, in La2CuO4+δ, in the high-pressure, oxygen-annealed samples. For samples analyzed at room temperature, x-ray diffraction measurements show that beyond δ ≍ 0.10–0.13, additional oxygen is accommodated in a perovskite-like LaCuO3−α phase. An analysis of the thermochemical measurements indicates that the nature of holes in La2CuO4+δ could change in the range of δ ≍ 0.03–0.06.16,17 It is further suggested that the observed change in the thermochemical behavior in the range of δ ≍ 0.03–0.06 could be the driving influence behind the spinodal decomposition of La2CuO4+δ at low temperatures (Dabrowski et al.10).

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 198 (1986).CrossRefGoogle Scholar
2Goodenough, J. B. and Manthiram, A., J. Solid State Chem. 88, 115 (1990).CrossRefGoogle Scholar
3Vaknin, D., Sinha, S. K., Moneton, D. E., Johnson, D. C., Newsam, J. M., Saffinya, C. R., and King, H. E. Jr., Phys. Rev. Lett. 58, 2802 (1987).CrossRefGoogle Scholar
4Grant, P. M., Parkin, S. S. P, Lee, V. Y., Engler, E. M., Ramirez, M. L., Vasquez, J. E., Lim, G., Jacowitz, R. D., and Greene, R. L., Phys. Rev. Lett. 58, 2482 (1987).CrossRefGoogle Scholar
5Beille, J., Chevalier, B., Demazeau, G., Deslandes, F., Etorneau, J., LaBorde, O., Michel, C., LeJay, P., Provost, J., Raveau, B., Sulpice, A., Tholence, J. L., and Tournier, R., Phys. B 146, 307 (1987).CrossRefGoogle Scholar
6Schirber, J. E., Morosin, B., Merrill, R. M., Hlava, P. F., Venturini, E. L., Kwak, J. F., Nigrey, P. J., Baugham, R. J., and Ginley, D. S., Phys. C 152, 21 (1988).Google Scholar
7Jorgensen, J. D., Dabrowski, B., Pei, S., Hinks, D. G., Soderholm, L., Morosin, B., Schirber, J. E., Venturini, E. L., and Ginley, D. S., Phys. Rev. B 38, 11337 (1988).CrossRefGoogle Scholar
8Boyd, F. R. and England, J. L., J. Geophys. Res. 65, 741 (1960).CrossRefGoogle Scholar
9Navrotsky, A., National Inst. Standards Spec. Pub. 804, 379 (1991).Google Scholar
10Dabrowski, B., Jorgensen, J. D., Hinks, D. G., Pei, S., Richards, D. R., Vanfleet, H. B., and Decker, D. L., Phys. C 162–164, 99 (1989).CrossRefGoogle Scholar
11Mirwald, P. W., Getting, I. C., and Kennedy, G. C., J. Geophys. Res. 80, 1519 (1975).CrossRefGoogle Scholar
12Akella, J., Vaidya, S. N., and Kennedy, G. C., Phys. Rev. 185, 1135 (1969).CrossRefGoogle Scholar
13DiCarlo, J., Bularzik, J., and Navrotsky, A., J. Solid State Chem. 96, 381 (1992).CrossRefGoogle Scholar
14Bularzik, J., Navrotsky, A., DiCarlo, J., Bringley, J., Scott, B., and Trail, S., J. Solid State Chem. 93, 418 (1991).CrossRefGoogle Scholar
15Mehta, A., DiCarlo, J., and Navrotsky, A., J. Solid State Chem. 101, 173 (1992).CrossRefGoogle Scholar
16Burdett, J., J. Solid State Chem. 100 (1992).Google Scholar
17Chaillout, C., Cheong, S. W., Fisk, Z., Lehmann, M. S., Marezio, M., Morosin, B., and Schirber, J. E., Phys. C 158, 183 (1989).CrossRefGoogle Scholar