Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:23:02.893Z Has data issue: false hasContentIssue false

Lattice distortion of thick epitaxial layers

Published online by Cambridge University Press:  31 January 2011

K. Bickmann
Affiliation:
Institut für Festkörperforschung, KFA Forschungszentrum D-52425 Jülich, Germany
J. Hauck
Affiliation:
Institut für Festkörperforschung, KFA Forschungszentrum D-52425 Jülich, Germany
Get access

Abstract

Precise x-ray diffraction measurements between room temperature and ∼400 °C (Bond method) exhibit some details in the variations of strain in ∼ 1 μm thick epitaxial layers of GaAs, InP, CdTe, EuS, or SrS on Si or GaAs substrates. The lattice parameters of the cubic layers, which are deposited at high temperatures, deviate from the lattice parameters, a0, of small unconstrained single crystals by Δa/a0 = ∈0 ≲ 10−3. The layers adhere to the substrates below Tc and adopt different strains, ∈ and ∈, parallel and perpendicular to the substrate. Frequently the Tc and ∈0 values vary on annealing at 160–400 °C. The ratio E = —(∈ — ∈0)/(∈ — ∈0) remains constant for each sample. The change of the relative volume ΔV/V0 = ∈ (2—E) +∈0 (1 + E) at the variation of ∈0 can give rise to corrugations, blisters, or microcracks in the epitaxial layers. Stable epitaxial layers with constant ∈0 and Tc values can be obtained by deposition on buffer layers or stepped substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bickmann, K., Hauck, J., Brauers, A., and Leiber, J., Thin Solid Films 190, 279 (1990).CrossRefGoogle Scholar
2.Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990).CrossRefGoogle Scholar
3.Hauck, J. and Bickmann, K., Thin Solid Films 151, 191 (1987).CrossRefGoogle Scholar
4.Bickmann, K. and Hauck, J., Mater. Lett. 11, 236 (1991).CrossRefGoogle Scholar
5.Bickmann, K., Hauck, J., Möck, P., and Berger, H., J. Cryst. Growth 131, 133 (1993).CrossRefGoogle Scholar
6.Bickmann, K. and Hauck, J., Acta Crystallogr. A46, Suppl., C377 (1990).Google Scholar
7.Matthews, J. W., in Epitaxial Growth, Part B, edited by Matthews, J.W. (Academic Press, New York, 1975), p. 559.CrossRefGoogle Scholar
8.Narayan, J., Sharan, S., and Fan, J. C. C., J. Metals 41, 10 (1989).Google Scholar
9.Hornstra, J. and Bartels, W. J., J. Cryst. Growth 44, 513 (1978).CrossRefGoogle Scholar
10.Huang, H-C. W., Chandhari, P., Kircher, C. J., and Murakami, M., Philos. Mag. A 54, 583 (1986).CrossRefGoogle Scholar
11.Ebe, H. and Takigawa, H., Mater. Sci. Eng. B 16, 57 (1993).CrossRefGoogle Scholar
12.Murakami, M., CRC Crit. Rev. Solid State Mater. Sci. 11, 317 (1984).CrossRefGoogle Scholar
13.Mazzer, M., Romanato, F., Drigo, A. V., and Carnera, A., J. Cryst. Growth 126, 125 (1993).CrossRefGoogle Scholar
14.Okada, Y., Tokumaru, Y., and Kadota, Y., Appl. Phys. Lett. 48, 975 (1986).CrossRefGoogle Scholar