Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T03:28:00.435Z Has data issue: false hasContentIssue false

Liquidus relations in Y–Ba–Cu oxides

Published online by Cambridge University Press:  31 January 2011

Terry Aselage
Affiliation:
Electronic Ceramics Division 1842 and Ceramics Development Division 1845, Sandia National Laboratories, Albuquerque, New Mexico 87185
Keith Keefer
Affiliation:
Electronic Ceramics Division 1842 and Ceramics Development Division 1845, Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The liquidus relations in the system YO1.5–BaO–CuOx in air in the compositional region near the superconducting oxide YBa2Cu3Ox were studied by differential thermal analysis, x-ray diffraction, electron microprobe analysis, and visual observation. The temperatures of 11 invariant points and the corresponding reactions were determined. YBa2Cu3Ox was found to melt incogruently at 1015 °C to Y2BaCuO5, which in turn melts incongruently to Y2O3 at 1270 °C. These reactions mean that preparing the superconducting phase by melting and rapid cooling will result in the presence of these two phases as well. The peritectic reaction YBa2Cu3Ox + CuO⇉Y2BaCuO5 + liquid at 940 °C accounts for the observation of partial melting, improved synthesis purity, and grain growth at temperatures of 950 °C. The determination of these invariant temperatures and reactions provide insight into optimal processing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wu, M. K., Ashburn, J. R.Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Cava, R. J., Batlogg, B., Dover, R. B. van, Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
3Wang, G., Hwu, S.-J., Song, S. N., Ketterson, J. B., Marks, L. D., Poeppelmeier, K. R., and Mason, T. O., Adv. Ceram. Mater. 2 (3B), 313 (1987).CrossRefGoogle Scholar
4Frase, K. G., Liniger, E. G., and Clarke, D. R., J. Am. Ceram. Soc. 70 (9), C204 (1987).CrossRefGoogle Scholar
5Frase, K. G. and Clarke, D. R., Adv. Ceram. Mater. 2 (3B), 295 (1987).CrossRefGoogle Scholar
6Cook, L. P., Chiang, C. K., W. Wong-Ng, and Blendell, J., Adv. Ceram. Mater. 2 (3B), 656 (1987).CrossRefGoogle Scholar
7Ono, A. and Tanaka, T., Jpn. J. Appl. Phys. 26 (5), L825 (1987).CrossRefGoogle Scholar
8Holtzberg, F., Kaiser, D. L., Scott, B. A., McGuire, T. R., Jackson, T. N., Kleinsasser, A., and Tozer, S., in Chemistry of High- Temperature Superconductors, ACS Symposium Series Vol. 351, edited by Nelson, D. L., Wittingham, M. S. and George, T. F. (American Chemical Society, Washington, DC, 1987), p. 79.CrossRefGoogle Scholar
9Schneemeyer, L. F., Waszczak, J. V., Siegrist, T., Dover, R. B. Van, Rupp, L. W., Batlogg, B., Cava, R. J., and Murphy, D. W., Nature 328, 601 (1987).CrossRefGoogle Scholar
10Takei, H., Takeya, H., lye, Y., Tamegi, T., and Sakai, F., Jpn. J. Appl. Phys. 26 (9), L1425 (1987).CrossRefGoogle Scholar
11Takada, J., Kitaguchi, H., Osaka, A., Miura, Y., Takahashi, K., Takano, M., Ikeda, Y., Bando, Y., Yamamoto, N., Oka, Y., and Tomii, Y., Jpn. J. Appl. Phys. 26 (10), L1707 (1987).CrossRefGoogle Scholar
12Takekawa, S. and Iyi, N., Jpn. J. Appl. Phys. 26 (5), L851 (1987).CrossRefGoogle Scholar
13Jin, S., Tiefel, T. H., Sherwood, R. C., Kammlot, G. W., and Zahurak, S. M., Appl. Phys. Lett. 51 (12), 943 (1987).CrossRefGoogle Scholar
14Hermann, A. M. and Sheng, Z. Z., Appl. Phys. Lett. 51 (22), 1854 (1987).CrossRefGoogle Scholar
15McKittrick, J. L., Chen, L.-Q., Sasayama, S., McHenry, M. E., Kalonji, G., and O'Handley, R. C., Adv. Ceram. Mater. 2 (3B), 353 (1987).CrossRefGoogle Scholar
16Matsuzaki, K., Inoue, A., Kimura, H., Shimizu, K., and Mosumoto, T., Jpn. J. Appl. Phys. 26 (8), L1384 (1987).CrossRefGoogle Scholar
17Cuomo, J. J., Guarnieri, C. R., Shivashankar, S. A., Roy, R. A., SYee, D., and Rosenberg, R., Adv. Ceram. Mater. 2 (3B), 422 (1987).CrossRefGoogle Scholar
18Elam, W. T., Kirkland, J. P., Neiser, R. A., and Skelton, E. F., Adv. Ceram. Mater. 2 (3B), 411 (1987).CrossRefGoogle Scholar
19Kirkland, J. P., Neiser, R. A., Herman, H., Elam, W. T., Sampath, S., Skelton, E. F., Gansert, D., and Wang, H. G., Adv. Ceram. Mater. 2 (3B), 401 (1987).CrossRefGoogle Scholar
20Neiser, R. A., Kirkland, J. P., Herman, H., Elam, W. T., and Skelton, E. F., Mat. Sci. Eng. 91, L13 (1987).CrossRefGoogle Scholar
21Roth, R. S., Davis, K. L., and Dennis, J. R., Adv. Ceram. Mater. 2 (3B), 303 (1987).CrossRefGoogle Scholar
22Eatough, M. O., Ginley, D. S., Morosin, B., and Venturini, E. L., Appl. Phys. Lett. 51, 367 (1987).CrossRefGoogle Scholar
23Jorgensen, J. D., Beno, M. A., Hicks, D. G., Soderholm, L., Volin, K. J., Hilterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
24Levine, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists, 1969 Supplement (American Ceramic Society, Columbus, OH, 1969), Fig. 2069.Google Scholar
25Schmid, R., Met. Trans. B 14, 473 (1983).CrossRefGoogle Scholar
16Joint Committee on Powder Diffraction Standards File (International Centre for Diffraction Data, Swarthmore, PA, 1987).Google Scholar
27Teske, C. L. and Muller-Buschbaum, H., Z. Naturforsch. B 27 (3), 296 (1972).CrossRefGoogle Scholar
28Eatough, M. O. (unpublished data).Google Scholar
29Smith, D. K., Nichols, M. C., and Zolensky, M. E., Department of Geosciences, The Pennsylvania State University, University Park, PA (1983).Google Scholar