Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:38:14.564Z Has data issue: false hasContentIssue false

Local Strains Measured in Al Lines During Thermal Cycling and Electromigration Using Convergent-beam Electron Diffraction

Published online by Cambridge University Press:  01 July 2005

J. Nucci*
Affiliation:
Max Planck Institute for Metals Research, Stuttgart, Germany
S. Krämer
Affiliation:
Max Planck Institute for Metals Research, Stuttgart, Germany
E. Arzt
Affiliation:
Max Planck Institute for Metals Research, Stuttgart, Germany
C.A. Volkert
Affiliation:
Max Plank Institute for Metals Research, Stuttgart, Germany; and Forschungszentrum Karlsruhe, Karlsruhe, Germany
*
a)Address all correspondence to this author. e-mail: nucci@mf.mpg.de
Get access

Abstract

In situ local measurement of sub-threshold strains generated during the electromigration of a 0.3-μm-wide Al interconnect was performed for the first time using convergent-beam electron diffraction (CBED) in a transmission electron microscope (TEM). Thermal strains were also analyzed and provided verification for the electromigration analysis. Spatially averaged strains resulting from thermal cycling and electromigration quantitatively agree with models and data from previous studies. However, the local strains exhibited variations as large as 2 × 10−3. After eliminating other possible mechanisms, the strain inhomogeneity is attributed to local plasticity through source-limited dislocation activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rose, H. and Krahl, K. Electron optics of imaging energy filters, in Energy Filtering Transmission Electron Microscopy, edited by Reimer, L. (Springer, Berlin, Germany, 1995), pp. 43159.CrossRefGoogle Scholar
2Kraemer, S., Mayer, J., Witt, C., Weickenmeier, A. and Ruehle, M.: Analysis of local strain in aluminum interconnects by energy filtered CBED. Ultramicroscopy 81, 245 (2000).CrossRefGoogle Scholar
3Kraemer, S., Volkert, C.A. and Mayer, J.: Analysis of local strain in aluminum interconnects by convergent beam electron diffraction. Microsc. Microanal. 9, 390 (2003).CrossRefGoogle Scholar
4Besser, P.R. Mechanical strains and stresses in aluminum and copper interconnect lines for 0.18 mu m logic technologies, in Stress Induced Phenomena in Metallization, edited by Kraft, O., Arzt, E., Volkert, C.A., Ho, P. and Okabayashi, H. (AIP Proc. 491, Melville, NY, 1999), p.229.Google Scholar
5Kraft, O. and Nix, W.D. Thermomechanical behavior of continuous and patterned Al thin films, in Materials Reliability in Microelectronics VIII, edited by Bravman, J.C., Marieb, T.N., Lloyd, J.R., and Korhonen, M.A. (Mater. Res. Soc. Symp. Proc. 516, Warrendale, PA, 1998), p. 201.Google Scholar
6Baker, S.P., Kretschmann, A. and Arzt, E.: Thermomechanical behavior of different texture components in Cu thin films. Acta Mater. 49, 2145 (2001).CrossRefGoogle Scholar
7Dehm, G., Balk, T.J., Edongue, H. and Arzt, E.: Small-scale plasticity in thin Cu and Al films. Microelectron. Eng. 70, 412 (2003).CrossRefGoogle Scholar
8Blech, I.A. and Herring, C.: Stress generation by electromigration. Appl. Phys. Lett. 29(3), 131 (1976).CrossRefGoogle Scholar
9Blech, I.A. and Tai, K.L.: Measurement of stress gradients generated by electromigration. Appl. Phys. Lett. 30, 387 (1977).CrossRefGoogle Scholar
10Hemmert, R.S. and Costa, M. Electromigration-induced compressive stresses in encapsulated thin-film conductors, in 29th Annual Proceedings (IEEE Reliability Physics 91CH2974-4, New York, 1991) p. 64.Google Scholar
11Hemmert, R.S. and Shatzkes, M.: Electromigration-induced compressive stresses in encapsulated thin-film conductors with and without the presence of drift velocity. J. Appl. Phys. 73, 813 (1993).CrossRefGoogle Scholar
12Blech, I.A.: Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47, 1203 (1976).CrossRefGoogle Scholar
13Korhonen, M.A., Borgensen, P., Tu, K.N. and Li, C-Y.: Stress evolution due to electromigration in confined metal lines. J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
14Solak, H.H., Vladimirsky, Y., Cerrina, F., Lai, B., Yun, W., Cai, Z., Ilinski, P., Legnini, D. and Rodrigues, W.: Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction. J. Appl. Phys. 86, 884 (1999).CrossRefGoogle Scholar
15Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Spolenak, R., Brown, W.L., Marieb, T., Fujimoto, H., Batterman, B.W. and Patel, J.R.: High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction. Appl. Phys. Lett. 80, 3724 (2002).CrossRefGoogle Scholar
16Phillips, M.A., Spolenak, R., Tamura, N., Brown, W.L., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Batterman, B.W., Arzt, E. and Patel, J.R.: X-ray microdiffraction: Local stress distributions in polycrystalline and epitaxial thin films. Microelectron. Eng. 75, 117 (2004).CrossRefGoogle Scholar
17Spolenak, R., Brown, W.L., Tamura, N., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B.W. and Patel, J.R.: Local plasticity of Al thin films as revealed by x-ray microdiffraction. Phys. Rev. Lett, 90(9), 096102/1 (2003).CrossRefGoogle ScholarPubMed
18Wang, P-C., III, G.S. Cargill, Noyan, I.C. and Hu, C-K.: Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction. Appl. Phys. Lett. 72, 1296 (1998).CrossRefGoogle Scholar
19Zhang, X., Solak, H., Cerrina, F., Lai, B., Yun, W., Cai, Z., Ilinski, P., Legnini, D. and Rodrigues, W.: X-ray microdiffraction study of Cu interconnects. Appl. Phys. Lett. 76, 315 (2000).CrossRefGoogle Scholar
20Wang, P-C., Noyan, I.C., Kaldor, S.K., Jordan-Sweet, J.L., Lingor, E.G. and Hu, C-K.: Real-time x-ray microbeam characterization of electromigration effects in Al(Cu) wires. Appl. Phys. Lett. 78, 2712 (2001).CrossRefGoogle Scholar
21Kao, H-K., III, G.S. Cargill, Giuliani, F. and Hu, C-K.: Relationship between copper concentration and stress during electromigration in an Al(0.25 at.% Cu) conductor line. J. Appl. Phys. 93, 2516 (2003).CrossRefGoogle Scholar
22Valek, B.C., Tamura, N., Spolenak, R., Caldwell, W.A., MacDowell, A.A., Celestre, R.S., Padmore, H.A., Bravman, J.C., Batterman, B.W., Nix, W.D. and Patel, J.R.: Early stage of plastic deformation in thin films undergoing electromigration. J. Appl. Phys. 94, 3757 (2003).CrossRefGoogle Scholar
23Barabash, R.I., Ice, G.E., Tamura, N., Valek, B.C., Bravman, J.C., Spolenak, R. and Patel, J.R.: Quantitative characterization of electromigration-induced plastic deformation in Al(0.5 wt% Cu) interconnect. Microelectron. Eng. 75, 24 (2004).CrossRefGoogle Scholar
24Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York, NY, 1996), pp. 301345.CrossRefGoogle Scholar
25Kraemer, S. Measurement of local lattice strains in Al interconnects by electron diffraction. Dissertation from the University of Stuttgart, Stuttgart, Germany (2001).Google Scholar
26Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
27Thompson, C.V.: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 (1993).CrossRefGoogle Scholar
28Baker, S.P.: Plastic deformation and strength of materials in small dimensions. Mater. Sci. Eng. A319–321, 16 (2001).CrossRefGoogle Scholar
29Keller, R.R., Maier, H.J., Renner, H. and Mughrabi, H.: Local internal stress characterization in a tensile-deformed copper single crystal by convergent-beam electron diffraction. Philos. Mag. A 70, 329 (1994).CrossRefGoogle Scholar
30van Blanckenhagen, B., Gumbsch, P. and Arzt, E.: Dislocation sources and the flow stress of polycrystalline thin metal films. Philos. Mag. Lett. 83, 1 (2003).CrossRefGoogle Scholar
31Keller-Flaig, R-M., Legros, M., Sigle, W., Gouldstone, A., Hemker, K.J., Suresh, S. and Arzt, E.: In situ transmission electron microscopy investigation of threading dislocation motion in passivated thin aluminum films. J. Mater. Res. 14, 4673 (1999).CrossRefGoogle Scholar
32Legros, M., Dehm, G., Balk, T.J., Arzt, E., Bostrom, O., Gergaud, P., Thomas, O. and Kaouache, B. Plasticity-related phenomena in metallic films on substrates, in Multiscale Phenomena in Materials—Experiments and Modeling Related to Mechanical Behavior, edited by Zbib, H.M., Lassila, D.H., Levine, L.E., and Hemker, K.J. (Mater. Res. Soc. Symp. Proc. 779, Warrendale, PA, 2003), p. 63.Google Scholar
33Witt, C. Electromigration in bamboo aluminum interconnects. Dissertation from the Institute fuer Metallkunde, University of Stuttgart, Stuttgart, Germany (2001).Google Scholar