Published online by Cambridge University Press: 01 April 2006
The U–6 wt% Nb (U6Nb) alloy in the water-quenched (WQ) state has been in service for a number of years. Its long-term reliability is affected by the changes of the alloy microstructure and mechanical properties during service. In this paper, the water quenched U–6 wt% Nb (WQ-U6Nb) alloy in service for 15 years at ambient temperatures was studied using an analytical transmission electron microscopy (TEM) analysis. We found that the long-term natural aging resulted in a disorder–order phase transformation, leading to the formation of anti-phase boundaries (APBs). The newly found ordered phase was then identified by proposing two phase transform schemes, which were also discussed with regards to the potential subsequence of the microstructural evolution for the alloy in further service. The initial study also provides convincing evidence for the disorder–order transformation, which has been predicted by numerous studies to be a transient thermodynamic event before spinodal decomposition. This suggests that the long-term naturally aged WQ–U6Nb is a good model alloy to study thermodynamic and kinetic phenomena requiring chronic processes.