Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T22:28:24.988Z Has data issue: false hasContentIssue false

Low-cycle fatigue behavior and life prediction of fine-grained 316LN austenitic stainless steel

Published online by Cambridge University Press:  20 November 2020

Zhe Zhang
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
An Li
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
Yanping Wang
Affiliation:
School of Chemical Engineering, Inner Mongolia Polytechnic University, Hohhot010051, China
Qiang Lin*
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
Xu Chen
Affiliation:
School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
*
a)Address all correspondence to this author. e-mail: linq@tju.edu.cn
Get access

Abstract

Grain refinement has been applied to enhance the materials strength for miniaturization and lightweight design of nuclear equipment. It is critically important to investigate the low-cycle fatigue (LCF) properties of grain refined 316LN austenitic stainless steels for structural design and safety assessment. In the present work, a series of fine-grained (FG) 316LN steels were produced by thermo-mechanical processes. The LCF properties were studied under a fully reversed strain-controlled mode at room temperature. Results show that FG 316LN steels demonstrate good balance of high strength and high ductility. However, a slight loss of ductility in FG 316LN steel induces a significant deterioration of LCF life. The rapid energy dissipation in FG 316LN steels leads to the reduction of their LCF life. Dislocations develop rapidly in the first stage of cycles, which induces the initial cyclic hardening. The dislocations rearrange to form dislocations cell structure resulting in cyclic softening in the subsequent cyclic deformation. Strain-induced martensite transformation appears in FG 316LN stainless steels at high strain amplitude (Δε/2 = 0.8%), which leads to the secondary cyclic hardening. Moreover, a modified LCF life prediction model for grain refined metals predicts the LCF life of FG 316LN steels well.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Manjanna, J., Kobayashi, S., Kamada, Y., Takahashi, S., and Kikuchi, H.: Martensitic transformation in SUS 316LN austenitic stainless steel at RT. J. Mater. Sci. 43, 26592665 (2008).CrossRefGoogle Scholar
Shi, S., Zhang, Z., Wang, X., Zhou, G., Xie, G., Wang, D., Chen, X., and Ameyama, K.: Microstructure evolution and enhanced mechanical properties in SUS316LN steel processed by high pressure torsion at room temperature. Mater. Sci. Eng. A 711, 476483 (2018).CrossRefGoogle Scholar
Zhu, P., Cao, X., Wang, W., Zhao, J., Lu, Y., and Shoji, T.: An investigation on microstructure and pitting corrosion behavior of 316L stainless steel weld joint. J. Mater. Res. 32, 39043911 (2017).10.1557/jmr.2017.316CrossRefGoogle Scholar
Yuan, X., Yu, W., Fu, S., Yu, D., and Chen, X.: Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel. Mater. Sci. Eng. A 677, 193202 (2016).CrossRefGoogle Scholar
Xie, X.F., Jiang, W.C., Chen, J.K., Zhang, X.C., and Tu, S.T.: Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: Experimental and damage-coupled constitutive modeling. Int. J. Plasticity 114, 196214 (2019).10.1016/j.ijplas.2018.11.001CrossRefGoogle Scholar
Wu, H.C., Li, C.T., Fang, K.W., Xue, F., Yang, B., and Song, X.P.: Effect of grain size on the low cycle fatigue behavior of 316LN stainless steel in high temperature water. Mater. Corros. 68, 11801189 (2017).CrossRefGoogle Scholar
Goyal, S., Mandal, S., Parameswaran, P., Sandhya, R., Athreya, C.N., and Laha, K.: A comparative assessment of fatigue deformation behavior of 316 LN SS at ambient and high temperature. Mater. Sci. Eng. A 696, 407415 (2017).CrossRefGoogle Scholar
Ganesan, V., Mathew, M.D., and Sankara Rao, K.B.: Influence of nitrogen on tensile properties of 316LN SS. Mater. Sci. Technol. 25, 614618 (2009).10.1179/174328408X317066CrossRefGoogle Scholar
Chui, P.F., Jun, O.Y., Liu, Y., Liang, Y.J., Li, Y., Fan, S.H., and Sun, K.N.: Effect of a nanostructured surface layer on the tensile properties of 316L stainless steel. J. Mater. Res. 28, 13111315 (2013).CrossRefGoogle Scholar
Xu, D.M., Li, G.Q., Wan, X.L., Xiong, R.L., Xu, G., Wu, K.M., Somanid, M.C., and Misra, R.D.K.: Deformation behavior of high yield strength–high ductility ultrafine-grained 316LN austenitic stainless steel. Mater. Sci. Eng. A 688, 407415 (2017).CrossRefGoogle Scholar
Estrin, Y. and Vinogradov, A.: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61, 782817 (2013).CrossRefGoogle Scholar
Cao, Y., Ni, S., Liao, X., Song, M., and Zhu, Y.T.: Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R 133, 159 (2018).CrossRefGoogle Scholar
Mughrabi, H. and Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 14131427 (2010).CrossRefGoogle Scholar
Huang, H.W., Wang, Z.B., Lu, J., and Lu, K.: Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 87, 150160 (2015).10.1016/j.actamat.2014.12.057CrossRefGoogle Scholar
Vogt, J-B., Foct, J., Regnard, C., Robert, G., and Dhers, J.: Low-temperature fatigue of 316L and 316LN austenitic stainless steels. Metall. Trans. A 22A, 23852392 (1991).CrossRefGoogle Scholar
Jin, D., Li, J.H., and Shao, N.: The effect of dynamic strain aging on fatigue property for 316L stainless steel. J. Mater. Res. 31, 627634 (2016).10.1557/jmr.2016.49CrossRefGoogle Scholar
Strizak, J.P. and Mansur, L.K.: The effect of mean stress on the fatigue behavior of 316 LN stainless steel in air and mercury. J. Nucl. Mater. 318, 151156 (2003).CrossRefGoogle Scholar
Prasad Reddy, G.V., Kannan, R., Mariappan, K., Sandhya, R., Sankaran, S., and Bhanu Sankara Rao, K.: Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-I cyclic deformation behavior. Int. J. Fatigue 81, 299308 (2015).10.1016/j.ijfatigue.2015.07.033CrossRefGoogle Scholar
Prasad Reddy, G.V., Mariappan, K., Kannan, R., Sandhya, R., Sankaran, S., and Bhanu Sankara Rao, K.: Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-II fatigue life and fracture. Int. J. Fatigue 81, 309317 (2015).CrossRefGoogle Scholar
Li, B.B., Zheng, Y.M., Shi, S., Liu, Y.M., Li, Y.J., and Chen, X.: Microcrack initiation mechanisms of 316LN austenitic stainless steel under in-phase thermomechanical fatigue loading. Mater. Sci. Eng. A 752, 114 (2019).10.1016/j.msea.2019.02.077CrossRefGoogle Scholar
Li, B.B., Zheng, Y.M., Shi, S., Zhang, Z., and Chen, X.: Cyclic deformation and cracking behavior of 316LN stainless steel under thermomechanical and isothermal fatigue loadings. Mater. Sci. Eng. A 773, 138866 (2020).CrossRefGoogle Scholar
Shao, C.W., Zhang, P., Zhu, Y.K., Zhang, Z.J., Pang, J.C., and Zhang, Z.F.: Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution. Acta Mater. 134, 128142 (2017).CrossRefGoogle Scholar
Droste, M., Ullrich, C., Motylenko, M., Fleischer, M., Weidner, A., Freudenberger, J., Rafaja, D., and Biermann, H.: Fatigue behavior of an ultrafine-grained metastable CrMnNi steel tested under total strain control. Int. J. Fatigue 106, 143152 (2018).CrossRefGoogle Scholar
Kikuchi, S., Nukui, Y., Nakatsuka, Y., Nakai, Y., Nakatani, M., Kawabata, M.O., and Ameyama, K.: Effect of bimodal harmonic structure on fatigue properties of austenitic stainless steel under axial loading. Int. J. Fatigue 127, 222228 (2019).CrossRefGoogle Scholar
Kikuchi, S., Nakahara, Y., and Komotori, J.: Fatigue properties of gas nitrided austenitic stainless steel pre-treated with fine particle peening. Int. J. Fatigue 32, 403410 (2010).CrossRefGoogle Scholar
Basu, K., Das, M., Bhattacharjee, D., and Chakraborti, P.C.: Effect of grain size on austenite stability and room temperature low cycle fatigue behaviour of solution annealed AISI 316LN austenitic stainless steel. Mater. Sci. Technol. 23, 12781284 (2007).CrossRefGoogle Scholar
Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A.: Enhanced fatigue properties of nanostructured austenitic SUS316L stainless steel. Acta Mater. 59, 70607069 (2011).CrossRefGoogle Scholar
Järvenpää, A., Karjalainen, L.P., and Jaskari, M.: Effect of grain size on fatigue behavior of Type 301LN stainless steel. Int. J. Fatigue 65, 9398 (2014).10.1016/j.ijfatigue.2013.05.012CrossRefGoogle Scholar
Järvenpää, A., Jaskari, M., Man, J., and Karjalainen, L.P.: Stability of grain-refined reversed structures in a 301LN austenitic stainless steel under cyclic loading. Mater. Sci. Eng. A 703, 280292 (2017).CrossRefGoogle Scholar
Zhang, Z., Vajpai, S.K., Orlov, D., and Ameyama, K.: Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater. Sci. Eng. A 598, 106113 (2014).CrossRefGoogle Scholar
Zhang, Z., Orlov, D., Vajpai, S.K., Tong, B., and Ameyama, K.: Importance of bimodal structure topology in the control of mechanical properties of a stainless steel. Adv. Eng. Mater. 17, 791795 (2015).CrossRefGoogle Scholar
Zheng, R., Zhang, Z., Nakatani, M., Ota, M., Chen, X., Ma, C., and Ameyama, K.: Enhanced ductility in harmonic structure designed SUS316L produced by high energy ball milling and hot isostatic sintering. Mater. Sci. Eng. A 674, 212220 (2016).CrossRefGoogle Scholar
Di Schino, A., Barteri, M., and Kenny, J.M.: Effects of grain size on the properties of a low nickel austenitic stainless steel. J. Mater. Sci. 38, 47254733 (2003).CrossRefGoogle Scholar
Zhang, Z., Ma, H., Zheng, R., Hu, Q., Nakatani, M., Ota, M., Chen, G., Chen, X., Ma, C., and Ameyama, K.: Fatigue behavior of a harmonic structure designed austenitic stainless steel under uniaxial stress loading. Mater. Sci. Eng. A 707, 287294 (2017).CrossRefGoogle Scholar
Zhou, G., Ma, H., Zhang, Z., Sun, J., Wang, X., Zeng, P., Zheng, R., Chen, X., and Ameyama, K.: Fatigue crack growth behavior in a harmonic structure designed austenitic stainless steel. Mater. Sci. Eng. A 758, 121129 (2019).CrossRefGoogle Scholar
Botshekan, M., Degallaix, S., and Desplanques, Y.: Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77K. Mater. Sci. Eng. A 234–236, 463466 (1997).CrossRefGoogle Scholar
Kim, D.W., Kim, W.G., and Ryu, W-S.: Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel. Int. J. Fatigue 25, 12031207 (2003).CrossRefGoogle Scholar
Pham, M.S., Holdsworth, S.R., Janssens, K.G.F., and Mazza, E.: Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. Int. J Plasticity 47, 143164 (2013).CrossRefGoogle Scholar
Xu, D.M., Lia, G.Q., Wan, X.L., Misra, R.D.K., Zhang, X.G., Xu, G., and Wu, K.M.: The effect of annealing on the microstructural evolution and mechanical properties in phase reversed 316LN austenitic stainless steel. Mater. Sci. Eng. A 720, 3648 (2018).CrossRefGoogle Scholar
Lo, K.H., Shek, C.H., and Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39104 (2009).CrossRefGoogle Scholar
Challa, V.S.A., Wan, X.L., Somani, M.C., Karjalainen, L.P., and Misra, R.D.K.: Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Mater. Sci. Eng. A 613, 6070 (2014).CrossRefGoogle Scholar
Ding, H.Z., Mughrabi, H., and Höppel, H.W.: A low-cycle fatigue life prediction model of ultrafine-grained metals. Fatigue Fract. Eng. Mater. Struct. 25, 975984 (2002).CrossRefGoogle Scholar
Nelson, S., Ladani, L., Topping, T., and Lavernia, E.: Fatigue and monotonic loading crack nucleation and propagation in bimodal grain size aluminum alloy. Acta Mater. 59, 35503570 (2011).CrossRefGoogle Scholar
Supplementary material: Image

Zhang et al. supplementary material

Zhang et al. supplementary material 1

Download Zhang et al. supplementary material(Image)
Image 967.1 KB
Supplementary material: Image

Zhang et al. supplementary material

Zhang et al. supplementary material 2

Download Zhang et al. supplementary material(Image)
Image 440.1 KB
Supplementary material: Image

Zhang et al. supplementary material

Zhang et al. supplementary material 3

Download Zhang et al. supplementary material(Image)
Image 1.7 MB