Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T01:08:49.122Z Has data issue: false hasContentIssue false

Low-energy electron beam induced regrowth of isolated amorphous zones in Si and Ge

Published online by Cambridge University Press:  31 January 2011

I. Jenčič
Affiliation:
J. Stefan Institute, Jamova 39, 61000 Ljubljana, Slovenia
I. M. Robertson
Affiliation:
Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801
Get access

Abstract

Spatially isolated amorphous regions in Si and Ge have been regrown at room temperature by using an electron beam with an energy less than that required to cause displacement damage in crystalline material. The rate at which the zones regrow is a function of the energy of the electron beam. As the electron energy is increased from 25 keV (lowest energy employed), the regrowth rate decreases and reaches a minimum below the threshold displacement voltage. With further increases in the electron energy, the rate again increases. It is suggested that at the lower electron energies this room temperature regrowth process is stimulated by electronic excitation rather than by displacive-type processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Handbook of Ion Implanted Technology, edited by Ziegler, J.F. (North Holland, Amsterdam, 1992).Google Scholar
2.Priolo, F. and Rimini, E., Mater. Sci. Rep. 5, 319 (1990).CrossRefGoogle Scholar
3.Williams, J. S., in Surface Modification and Alloying, edited by Poate, J.M., Foti, G., and Jacobson, D. C. (Plenum Press, New York, 1983), p. 133.Google Scholar
4.Jenčič, I., Bench, M. W., Robertson, I. M., and Kirk, M. A., in Microstructure of Irradiated Materials, edited by Robertson, I. M., Rehn, L. E., Zinkle, S. J., and Phythian, W. J. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, PA, 1995), p. 481.Google Scholar
5.Jenčič, I., Bench, M. W., Robertson, I.M., and Kirk, M. A., J. Appl. Phys. 78, 974 (1995).Google Scholar
6.Vavilov, V. S., Kiv, A. E., and Niyazova, O. R., Phys. Status Solidi (a) 32, 11 (1975).CrossRefGoogle Scholar
7.Corbett, J. W. and Bourgoin, J.C., in Point Defects in Solids, Vol. 2: Semiconductors and Molecular Crystals, edited by Crawford, J. H. Jr., and Slifkin, L. M. (Plenum Press, New York, 1975), p. 96.Google Scholar
8.Bench, M. W., Tappin, D. K., and Robertson, I.M., Philos. Mag. Lett. 66, 39 (1992).CrossRefGoogle Scholar
9.Diaz de la Rubia, T. and Gilmer, G. H., Phys. Rev. Lett. 74, 2507 (1995).CrossRefGoogle Scholar
10.Caturla, M. J., Diaz de la Rubia, T., and Gilmer, G. H., J. Appl. Phys. 77, 3121 (1995).CrossRefGoogle Scholar
11.Howe, L. M. and Rainville, M. H., Nucl. Instrum. Methods 182/183, 143 (1981).CrossRefGoogle Scholar
12.Howe, L. M. and Rainville, M. H., Nucl. Instrum. Methods B 19/20, 61 (1987).CrossRefGoogle Scholar
13.Bethe, H., Handbuch der Physik, XXIV/1 (1933).Google Scholar
14.Lu, G-Q., Nygren, E., and Aziz, M., J. Appl. Phys. 70, 5323 (1991).CrossRefGoogle Scholar
15.Spaepen, F. and Turnbull, D., in Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J.W. (Academic Press, New York, 1982), Chap. 2.Google Scholar
16.Bench, M. W., Ph.D. Thesis, University of Illinois (1992).Google Scholar
17.Pennycook, S. J. and Narayan, J., Phys. Rev. Lett. 54, 1543 (1985).Google Scholar
18.Cherns, D., Howie, A., and Jacobs, M. H., Z. Naturforsch. 28A, 565 (1973).Google Scholar