Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:23:14.116Z Has data issue: false hasContentIssue false

Low-temperature processable inherently photosensitive polyimide gate dielectric for organic thin-film transistors: Synthesis, characterization, and application to transistors

Published online by Cambridge University Press:  01 April 2005

Seungmoon Pyo*
Affiliation:
Polymeric Nanomaterials Laboratory, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
Hyunsam Son
Affiliation:
Polymeric Nanomaterials Laboratory, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
Mi Hye Yi*
Affiliation:
Polymeric Nanomaterials Laboratory, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
*
a) Address all correspondence to these authors. e-mail: pyosm@krict.re.kr
b) Address all correspondence to these authors. e-mail: mhyi@krict.re.kr
Get access

Abstract

Low-temperature processable inherently photosensitive polyimide was prepared from a dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and aromatic diamines, 4,4′-diamino-3,3′dimethyl-diphenylmethane, through a polycondensation reaction, followed by a chemical imidization method. The photosensitive polyimide cured at 180 °C is used as a gate dielectric to fabricate flexible organic thin-film transistors with pentacene as an active semiconductor on polyethersulfone substrate. With the inherently photosensitive polyimide, the access to the gate electrode could be created easily without complicated and expensive lithographic techniques. A field effect carrier mobility of 0.007 cm2/V s was obtained for the pentacene organic thin-film transistors (OTFTs) with the photo-patterned polyimide as a gate dielectric. More detailed analysis for the pentacene OTFTs will be given with electrical properties of the thin polyimide film. Low-temperature processability and patternability of the polyimide give us more freedom to choose plastic substrates in OTFTs and facilitate the realization of low-cost organic electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrakopoulos, C.D. and Malenfant, P.R.L.: Organic thin film transistors for large area electronics. Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
2. Sheraw, C.D., Jackson, T.N., Eaton, D.L. and Anthony, J.E.: Functionalized pentacene active layer organic thin-film transistors. Adv. Mater. 15, 2009 (2003).CrossRefGoogle Scholar
3. Sirringhaus, H., Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).CrossRefGoogle ScholarPubMed
4. Lin, Y-Y., Gundlach, D.J., Nelson, S. and Jackson, T.N.: Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18, 606 (1997).CrossRefGoogle Scholar
5. Nelson, S.F., Lin, Y-Y., Gundlach, D.J. and Jackson, T.N.: Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854 (1998).CrossRefGoogle Scholar
6. Mach, P., Rodriguez, S.J., Nortrup, R., Wiltzius, P. and Rogers, J.A.: Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl. Phys. Lett. 78, 23 (2001).CrossRefGoogle Scholar
7. Ficker, J., Ullman, A., Fix, W., Rost, H. and Clemens, W.: Dynamic and lifetime measurement of polymer OFETs and integrated plastic circuits. Proc. SPIE. 4466, 95 (2001).CrossRefGoogle Scholar
8. Kane, M.G., Campi, J., Hammond, M.S., Cuomo, F.R., Greening, B., Sheraw, C.D., Nichols, J.A., Gundlach, D.J., Huang, J.R., Kuo, C.C., Jia, L., Klauk, H. and Jackson, T.N.: Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett. 21, 11 (2000).CrossRefGoogle Scholar
9. Matters, M., de Leeuw, D.M., Vissenberg, M.J.C.M., Hart, C.M., Herwig, P.T., Geuns, T., Mutsaers, C.M.J. and Drury, S.J.: Organic field-effect transistors and all-polymer integrated circuits. Opt. Mater. 12, 189 (1999).CrossRefGoogle Scholar
10. Scheinert, S., Paasch, G., Schrodner, M., Roth, H-K. and Sensfub, S.: Subthreshold characteristics of field effect transistors based on poly(3-dodecylithiophene) and an organic insulator. J. Appl. Phys. 92, 330 (2002).CrossRefGoogle Scholar
11. Klauk, H., Halik, M., Zschieschang, U., Eder, F., Schmid, G. and Dehm, C.: Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substraters. Appl. Phys. Lett. 82, 4175 (2003).CrossRefGoogle Scholar
12. Horowitz, G., Deloffre, F., Garnier, F., Hajlaoui, R., Hmyene, M. and Yassar, A.: All-organic field-effect transistors made of μconjugated oligomers and polymeric insulators. Synth. Met. 54, 435 (1993).CrossRefGoogle Scholar
13. Schroeder, R., Majewski, L.A. and Grell, M.: Improving organic transistor performance with Schottky contacts. Appl. Phys. Lett. 84, 1004 (2004).CrossRefGoogle Scholar
14. Schroeder, R., Majewski, L.A. and Grell, M.: A study of the threshold voltage in pentacene organic field-effect transistors. Appl. Phys. Lett. 83, 3201 (2003).CrossRefGoogle Scholar
15. Sheraw, C.D., Gundlach, D.J. and Jackson, T.N.: Spin-on polymer gate dielectric for high performance organic thin film transistors, in Flat-Panel Displays and Sensors—Principles, Materials and Processes, edited by Chalamala, B.R., Friend, R.H., Jackson, T.N., and Libsch, F.R. (Mater. Res. Soc. Symp. Proc.558, Warrendale, PA, 2000), p. 403.Google Scholar
16. Kato, Y., Iba, S., Teramoto, R., Sekitani, T. and Someya, T.: High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Appl. Phys. Lett. 84, 3789 (2004).CrossRefGoogle Scholar
17. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalopur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J. and Drazaic, P.: Proc. Natl. Acad. Sci. USA 98, 4835 (2001).CrossRefGoogle Scholar
18. Rogers, J.A., Bao, Z. and Raju, V.R.: Nonphotolithographic fabrication of organic transistors with micron feature sizes. Appl. Phys. Lett. 72, 2716 (1998).CrossRefGoogle Scholar
19. Bao, Z., Feng, Y., Dodabalapur, A., Raju, V.R. and Lovinger, A.J.: High–performance plastic transistors fabricated by printing techniques, Chem. Mater. 9, 1299 (1997).CrossRefGoogle Scholar
20. Bao, Z., Rogers, J.A. and Katz, H.E.: Printable organic and polymeric semiconducting materials and devices. J. Mater. Chem. 9, 1895 (1999).CrossRefGoogle Scholar
21. Hebner, T.R., Wu, C.C., Marcy, D., Lu, M.H. and Sturm, J.C.: Ink-jet printing of doped polymers for organic light-emitting devices. Appl. Phys. Lett. 72, 519 (1998).CrossRefGoogle Scholar
22. Kane, M.G., Campi, J., Hammond, M.S. and Cuomo, F.P.: Analog and digital circuits using organic thin-film transistors on polyester substrates. IEEE Electron Device Lett. 21, 534 (2000).CrossRefGoogle Scholar
23. Afzali, C.D., Dimitrakopoulos, C.D. and Graham, T.O.: Photosensitive pentacene precursor: Synthesis, photothermal patterning, and application in thin-film transistors. Adv. Mater. 15, 2066 (2003).CrossRefGoogle Scholar
24. Choi, H.Y., Kim, S.H. and Jang, J.: Self-organized organic thin-film transistors on plastic. Adv. Mater. 16, 732 (2004).CrossRefGoogle Scholar
25. Touwslager, F.T., Willard, N.P. and de Leeuw, D.W.: I-Line lithography of poly-(3,4-ethylenedioxythiophene) electrodes and application in all-polymer integrated circuits. Appl. Phys. Lett. 81, 4556 (2002).CrossRefGoogle Scholar
26. Sillion, B. and Verdet, L.: Polyimides and Other High-Temperature polymers (Elsevier Science, Amsterdam, The Netherlands, 1991), p. 363.Google Scholar
27. Feger, C. and Franke, H.: Polyimides: Polyimides in High-Performance Electronics Packaging and Optoelectronic Applications (Marcel Dekker, New York, NY, 1996), p. 759.Google Scholar
28. Ahne, H. and Rubner, R.: Photosensitive Polyimides: Applications of Polyimides in Electronics (Technomic, Lancaster, 1995), Ch. 2.Google Scholar
29. Bureau, J.M. and Droguet, J.P.: Polyimides: Applications of Polyimides as Photosensitive Materials (Marcel Dekker, New York, NY, 1996) pp. 743.Google Scholar
30. Ghosh, K.L. and Mittal, K.L.: Polyimides: Fundamentals and Applications (Marcel Dekker, New York, NY, 1996).Google Scholar
31. Lin, A., Sastri, V.R., Tesoro, G., Reiser, A. and Eachus, R.: On the cross-linking mechanism of benzophenone-containing polyimides. Macromolecules 21, 1165 (1988).CrossRefGoogle Scholar
32. Halik, M., Klauk, H., Zschieschang, U., Kriem, T., Schmid, G. and Radlik, W.: Fully patterned all-organic thin film transistors. Appl. Phys. Lett. 81, 289 (2002).CrossRefGoogle Scholar
33. Pyo, S.M., Lee, M.Y., Jeon, J.H., Lee, J.H., Yi, M.H. and Kim, J.S.: Organic thin film transistor with photoinitiator-free photosensitive polyimide as a gate insulator. Adv. Func. Mater. (2005, in press).Google Scholar
34. Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C. and Khaffaf, S.M.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Func. Mater. 13, 199 (2003).CrossRefGoogle Scholar
35. Gundlach, D.J., Lin, Y.Y., Jackson, T.N., Nelson, S.F. and Schlom, D.G.: Pentacene organic thin-film transistors-molecular ordering and mobility. IEEE Electron Device Lett. 18, 87 (1997).CrossRefGoogle Scholar