Published online by Cambridge University Press: 31 January 2011
For low-temperature firing of Pb0.94Sr0.06(Ni1/2W1/2)0.02(Mn1/3Nb2/3)0.07(Zr0.51Ti0.49)0.91O3 (PNW–PMN–PZT) system, BiFeO3 is selected as the sintering agent. In this study, the effects of BiFeO3 addition and sintering temperature on the microstructures and piezoelectric properties of the ceramics were investigated in detail. The ceramic with 10 mol% BiFeO3 sintered at 950 °C possesses optimal microstructure and piezoelectric properties. However, with the increase of sintering temperature the lower relative density, abnormal grain growth, and secondary phase accumulated at grain boundaries are observed, which deteriorates the piezoelectric properties. For the ceramics with different BiFeO3 addition sintered at 950 °C, the densification process and the grain growth are improved by suitable BiFeO3, while the morphotropic phase boundary (MPB) moving to the Ti-rich direction and the shrinkage of crystal cell occur. However, extra BiFeO3 inhabits the grain growth and introduces more cavities into the materials. Because of the microstructural changes that accompany the addition of BiFeO3 and the resulting decrease in sintering temperature, the maximum values of the piezoelectric properties are attained. By doping with 10 mol% BiFeO3, the sintering temperature of the PNW–PMN–PZT system can be lowered successfully from 1200 to 950 °C, while the excellent electric properties are kept.