Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T05:35:48.330Z Has data issue: false hasContentIssue false

Low-temperature synthesis and characterization of GaN nanocrystals from gallium trichloride precursor

Published online by Cambridge University Press:  01 December 2004

F.S. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China; and College of Material Science and Engineering, Southwest University of Science and Technology,Mianyang, 621002, People’s Republic of China
Q.L. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
J.K. Liang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China; and International Centre for Materials Physics, Academia Sinica, Shenyang 110016, People’s Republic of China
G.B. Song
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China; and College of Material Science and Engineering, Southwest University of Science and Technology,Mianyang, 621002, People’s Republic of China
L.T. Yang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
J. Luo
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Y.Q. Zhou
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
H.W. Dong
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
G.H. Rao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Get access

Abstract

Gallium nitride (GaN) has been synthesized by reacting gallium trichloride with ammonia (NH3) at low temperatures ranging from 500 to 1000 °C for 12 h. X-ray diffraction, transmission electron microscopy, infrared, and Raman backscattering spectra revealed that the synthesized GaN powder consists of single-phase nano-sized crystallites with the wurtzite-type structure. The average size of the crystals decreases with the reaction temperature from approximately ∼63 nm at 1000 °C to ∼5 nm at 500 °C. GaOCl and ϵ–Ga2O3 are the intermediate products during synthesis of the GaN. Characteristic shifts of the Raman peaks are associated with the change in crystal size. The band-edge emission of GaN at 361 nm was observed on room temperature photoluminescence spectra exclusively for the sample synthesized at 1000 °C, while a new and broad emission band appeared with the center ranging from 827 to 765 nm for the samples synthesized between 500 and 800 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nakamura, S., Mukai, T. and Senoh, M.: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
2Manasevit, H.M., Erdmann, F.M. and Simpson, W.I.: The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium. J. Electrochem. Soc. 118, 1864 (1971).CrossRefGoogle Scholar
3Andrews, J.E. and Littlejohn, M.: Growth of GaN thin-films from triethylgallium monamine. J. Electrochem. Soc. 122, 1273 (1975).CrossRefGoogle Scholar
4Khan, M.A., Skogman, R.A., Schulze, R.G. and Gershenzon, M.: Electrical properties and ion implantation of epitaxial GaN, grown by low pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 42, 430 (1983).CrossRefGoogle Scholar
5Detchprohm, T., Hiramatsu, K., Sawaki, N. and Akasaki, I.: The homoepitaxy of GaN by metalorganic vapor phase epitaxy using GaN substrates. J. Cryst. Growth 137, 170 (1994).CrossRefGoogle Scholar
6Onitsuka, T., Maruyama, T., Akimoto, K. and Bando, Y.: Interface structure of GaN on sapphire (0 0 0 1) studied by transmission electron microscope. J. Cryst. Growth 189/190, 295 (1998).CrossRefGoogle Scholar
7Puchinger, M., Wagner, T., Rodewald, B.J., Aldinger, F. and Lange, F.F.: Gallium nitride thin layers via a liquid precursor route. J. Cryst. Growth 208, 153 (2000).CrossRefGoogle Scholar
8Jian, J.K., Chen, X.L., He, M., Wang, W.J., Zhang, X.N. and Shen, F.: Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders. Chem. Phys. Lett. 368, 416 (2003).CrossRefGoogle Scholar
9Maruska, H.P. and Tietjen, J.J.: The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15, 327 (1969).CrossRefGoogle Scholar
10Jung, W-S.: Reaction intermediate(s) in the conversion of -gallium oxide to gallium nitride under a flow of ammonia. Mater. Lett. 57, 110 (2002).CrossRefGoogle Scholar
11Xie, Y., Qian, Y.T., Wang, W.Z., Zhang, S.Y. and Zhang, Y.H.: A benzene-thermal synthetic route to nanocrystalline GaN. Science 272, 1926 (1996).CrossRefGoogle ScholarPubMed
12Kisailus, D., Choi, J.H. and Lange, F.F.: GaN nanocrystals from oxygen and nitrogen-based precursors. J. Cryst. Growth 249, 106 (2003).CrossRefGoogle Scholar
13Topf, M., Steude, G., Fischer, S., Kriegseis, W., Dirnstorfer, I., Meister, D. and Meyer, B.K.: Low-pressure chemical vapor deposition of GaN epitaxial films. J. Cryst. Growth 189/190, 330 (1998).CrossRefGoogle Scholar
14Nickl, J.J., Just, W. and Bertinger, R.: Preparation of epitaxial gallium nitride. Mater. Res. Bull. 9, 1413 (1974).CrossRefGoogle Scholar
15Born, P.J. and Robertson, D.S.: The chemical preparation of gallium nitride layers at low temperatures. J. Mater. Sci. 15, 3003 (1980).CrossRefGoogle Scholar
16Lappa, R., Glowacki, G. and Galkowski, S.: Growth of GaN thin films from active nitrogen and GaCl. Thin Solid Films 32, 73 (1976).CrossRefGoogle Scholar
17Takahashi, N., Matsumoto, R., Koukitu, A. and Seki, H.: Vapor phase epitaxy of In xGa1- xN using InCl3, GaCl3 and NH3 sources. Jpn. J. Appl. Phys. 36 L601 (1997).CrossRefGoogle Scholar
18Bungaro, C., Rapcewicz, K. and Bernholc, J.: Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys. Rev. B 61, 6720 (2000).CrossRefGoogle Scholar
19Wright, A.F. and Nelson, J.S.: Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. Phys. Rev. B 50, 2159 (1994).CrossRefGoogle ScholarPubMed
20Davydov, V.Yu., Kitaev, Yu.E., Goncharuk, I.N., Smirnov, A.N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M.B., Mirgorodsky, A.P. and Evarestov, R.A.: Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998).CrossRefGoogle Scholar
21Liu, H.L., Chen, C.C., Chia, C.T., Yeh, C.C., Chen, C.H., Yu, M.Y., Keller, S. and DenBarrs, S.P.: Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chem. Phys. Lett. 345, 245 (2001).CrossRefGoogle Scholar
22Campbell, I.H. and Fauchet, P.M.: The effects of microcrystal size and shape on the one phonon raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).CrossRefGoogle Scholar
23Frayssinet, M.E., Knap, W., Prystawko, P., Leszczybski, M., Grzegory, I., Suski, T., Beaumont, B. and Gibart, P.: Infrared studies on GaN single crystals and homoepitaxial layers. J. Cryst. Growth 218, 161 (2000).CrossRefGoogle Scholar
24Yu, G., Ishikawa, H., Umeno, M., Egawa, T., Watanabe, J., Soga, T. and Jimbo, T.: The infrared optical functions of Al x Ga1–x N determined by reflectance spectroscopy. Appl. Phys. Lett. 73, 1472 (1998).CrossRefGoogle Scholar
25Zhao, L.X., Meng, G.W., Peng, X.S., Zhang, X.Y. and Zhang, L.D.: Synthesis, Raman scattering, and infrared spectra of large-scale GaN nanorods. J. Cryst. Growth 235, 124 (2002).CrossRefGoogle Scholar
26Grandjean, N., Massies, J. and Leroux, M.: Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Appl. Phys. Lett. 69, 2071 (1996).CrossRefGoogle Scholar
27Gotz, W., Johnson, N.M., Chen, C., Liu, H., Kuo, C. and Imler, W.: Activation energies of Si donors in GaN. Appl. Phys. Lett. 68, 3144 (1996).CrossRefGoogle Scholar
28Balagurov, L. and Chong, P.J.: Study of deep-level defects in n-GaN by the optical transmission method. Appl. Phys. Lett. 68, 43 (1996).CrossRefGoogle Scholar
29Reddy, C.V., Balakrishnan, K., Okumura, H. and Yoshida, S.: The origin of persistent photoconductivity and its relationship with yellow luminescence in molecular beam epitaxy grown undoped GaN. Appl. Phys. Lett. 73, 244 (1998).CrossRefGoogle Scholar
30Kumar, M.S. and Kumar, J.: XRD, XPS, SEM, PL and Raman scattering analysis of synthesized GaN powder. Mater. Chem. Phys. 77, 341 (2002).CrossRefGoogle Scholar