Published online by Cambridge University Press: 01 December 2004
Gallium nitride (GaN) has been synthesized by reacting gallium trichloride with ammonia (NH3) at low temperatures ranging from 500 to 1000 °C for 12 h. X-ray diffraction, transmission electron microscopy, infrared, and Raman backscattering spectra revealed that the synthesized GaN powder consists of single-phase nano-sized crystallites with the wurtzite-type structure. The average size of the crystals decreases with the reaction temperature from approximately ∼63 nm at 1000 °C to ∼5 nm at 500 °C. GaOCl and ϵ–Ga2O3 are the intermediate products during synthesis of the GaN. Characteristic shifts of the Raman peaks are associated with the change in crystal size. The band-edge emission of GaN at 361 nm was observed on room temperature photoluminescence spectra exclusively for the sample synthesized at 1000 °C, while a new and broad emission band appeared with the center ranging from 827 to 765 nm for the samples synthesized between 500 and 800 °C.