Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T13:32:12.976Z Has data issue: false hasContentIssue false

Luminescence distribution of Yb-doped Ca-α-SiAlON phosphors

Published online by Cambridge University Press:  31 January 2011

B. Dierre
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0044, Japan
X.L. Yuan
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
N. Hirosaki
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
T. Kimura
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
R-J. Xie
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
T. Sekiguchi*
Affiliation:
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; and Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0044, Japan
*
a)Address all correspondence to this author. e-mail: Sekiguchi.Takashi@nims.go.jp
Get access

Abstract

Luminescence properties of Yb-doped Ca-α-SiAlON phosphors with composition of Ca1−xYbxSi12−(m+n)Alm+nOnN16−n were investigated by using cathodoluminescence (CL). The ratio of Yb to Ca was kept constant while the host lattice was changed by replacing m+n(Si–N) bonds with m(Al–N) and n(Al–O) bonds. The luminescence of these phosphors consists of three peaks in the ultraviolet (UV), green (VIS), and infrared (IR) regions, which are attributed to the emissions from secondary phases, Yb2+ and Yb3+, respectively. The UV emission depends on the Si/Al ratio: the UV peak is centered at 310 nm for the Si-rich mix and at 360 nm for the Al-rich mix. We have found that Yb exists in the divalent state in α-SiAlON and in the trivalent state in the secondary phases.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hampshire, S., Park, H.K., Thompson, D.P.Jack, K.H.: α-Sialon. Nature 274, 31 1978CrossRefGoogle Scholar
2Krevel, J.W.H., Rutten, J.W.T., Mandal, H., Hintzen, H.T.Metselaar, R.: Luminescence properties of terbium-, cerium-, or europium-doped α-SiAlON materials. J. Solid State Chem. 165, 19 2002Google Scholar
3Xie, R-J., Mitomo, M., Uheda, K., Xu, F.F.Akimune, Y.: Preparation and luminescence spectra of calcium- and rare-earth (R = Eu, Tb, and Pr)-codoped α-SiAlON ceramics. J. Am. Ceram. Soc. 85, 1229 2002Google Scholar
4Xie, R-J., Hirosaki, N., Mitomo, M., Yamamoto, Y.Ohashi, N.: Photoluminescence of cerium-doped α-SiAlON materials. J. Am. Ceram. Soc. 87, 1368 2004Google Scholar
5Xie, R-J., Hirosaki, N., Sakuma, K., Yamamoto, Y.Mitomo, M.: Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes. Appl. Phys. Lett. 84, 5404 2004CrossRefGoogle Scholar
6Xie, R-J., Hirosaki, N., Mitomo, M., Yamamoto, Y., Suehiro, T.Sakuma, K.: Optical properties of Eu2+ in α-SiAlON. J. Phys. Chem. B108, 12027 2004Google Scholar
7Sakuma, K., Omichi, K., Kimura, N., Ohashi, M., Tanaka, D., Hirosaki, N., Yamamoto, Y., Xie, R-J.Suehiro, T.: Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor. Opt. Lett. 29, 2001 2004CrossRefGoogle ScholarPubMed
8Xie, R-J., Hirosaki, N., Mitomo, M., Takahashi, K.Sakuma, K.: Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. Appl. Phys. Lett. 88, 101104 2006Google Scholar
9Karunaratne, B.S.B., Lumby, R.J.Lewis, M.H.: Rare-earth-doped α′-Sialon ceramics with novel optical properties. J. Mater. Res. 11, 2790 1996CrossRefGoogle Scholar
10Shen, Z., Nygren, M.Halenius, U.: Absorption spectra of rare-earth-doped α-sialon ceramics. J. Mater. Sci. Lett. 16, 263 1997CrossRefGoogle Scholar
11Rubio, O.J.: Doubly-valent rare-earth ions in halide crystals. J. Phys. Chem. Solids 52, 101 1991Google Scholar
12Dierre, B., Yuan, X.L., Hirosaki, N., Xie, R.J.Sekiguchi, T.: Luminescence properties of Ca- and Yb-codoped SiAlON phosphors. Mater. Sci. Eng., B: Solid 146, 80 2008CrossRefGoogle Scholar
13Hu, J.Q., Bando, Y., Zhan, J.H., Li, Y.B.Sekiguchi, T.: Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Appl. Phys. Lett. 83, 4414 2003CrossRefGoogle Scholar
14Sekiguchi, T., Hu, J.Q.Bando, Y.: Cathodoluminescence study of one-dimensional free-standing widegap-semiconductor nanostructures: GaN nanotubes, Si3N4 nanobelts and ZnS/Si nanowires. J. Electron Microsc. (Tokyo) 53, 203 2004CrossRefGoogle ScholarPubMed
15Yuan, X.L., Zhang, B.P., Niitsuma, J.Sekiguchi, T.: Cathodoluminescence characterization of ZnO nanotubes grown by MOCVD on sapphire substrate. Mater. Sci. Semicon. Proc. 9, 146 2006CrossRefGoogle Scholar
16Xie, R-J., Hirosaki, N., Mitomo, M., Uheda, K., Suehiro, T., Xu, X., Yamamoto, Y.Sekiguchi, T.: Strong green emission from α-SiAlON activated by divalent ytterbium under blue light irradiation. J. Phys. Chem. B 109, 9490 2005CrossRefGoogle ScholarPubMed
17Hewett, C.L., Cheng, Y.B., Muddle, B.C.Trigg, M.B.: Thermal stability of calcium α-SiAlON ceramics. J. Eur. Ceram. Soc. 18, 417 1998Google Scholar
18Mandal, H.Thompson, D.P.: α→β Sialon transformation in calcium-containing α-SiAlON ceramics. J. Eur. Ceram. Soc. 19, 543 1999CrossRefGoogle Scholar
19Sekiguchi, T., Yuan, X.L.Niitsuma, J.: Fabrication of UHV-SEM equipped with Auger and cathodoluminescence systems and its application to the study of semiconductor nanostructures. Scanning 27, 103 2005Google Scholar
20Achour, S., Harabi, A.Tabet, N.: Cathodoluminescence dependence upon irradiation time. Mater. Sci. Eng., B 42, 289 1996CrossRefGoogle Scholar
21Swart, H.C., Terblans, J.J., Coetsee, E., Ntwaeaborwa, O.M., Dhlamini, M.S., Nieuwoudt, S.Holloway, P.H.: Review on electron stimulated surface chemical reaction mechanism for phosphor degradation. J. Vac. Sci. Technol., A 25, 917 2007Google Scholar
22Kenyon, A.J.: Recent developments in rare-earth doped materials for optoelectronics. Prog. Quant. Electron. 26, 225 2002CrossRefGoogle Scholar
23Zhang, L.G., Jin, H., Yang, W.Y., Xie, Z.P., Miao, H.H.An, L.N.: Optical properties of single-crystalline alpha-Si3N4 nanobelts. Appl. Phys. Lett. 86, 061908 2005Google Scholar
24Slack, G.A., Schowalter, L.J., Morelli, D., Freitas, J.A. Jr.: Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 246, 287 2002CrossRefGoogle Scholar