Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:20:58.371Z Has data issue: false hasContentIssue false

Magnetic hardening of melt-spun 2:14:1-based materials by high heating rate and short time crystallization treatments

Published online by Cambridge University Press:  03 March 2011

N. Murillo
Affiliation:
Dept. de Física de Materiales, Facultad de Químicas, 20009 San Sebastián, Spain
J. González
Affiliation:
Dept. de Física de Materiales, Facultad de Químicas, 20009 San Sebastián, Spain
J.M. González
Affiliation:
Instituto de Ciencia de Materiales-CSIC, c/Serrano 144, 28006 Madrid, Spain
C. de Julián
Affiliation:
Instituto de Ciencia de Materiales-CSIC, c/Serrano 144, 28006 Madrid, Spain
F. Cebollada
Affiliation:
Instituto de Ciencia de Materiales-CSIC, c/Serrano 144, 28006 Madrid, Spain
Get access

Abstract

Systematic studies have been carried out about the effects of the thermal treatment parameters on melt-spun materials quenched at different cooling rates and based on the 2:14:1 hard magnetic phase. Samples of nominal compositions Dy3Nd10.2Fe79.6B6Si1.2 and Pr3Nd10.2Fe79.6B6Si1.2 were annealed at temperatures above that of crystallization of the amorphous phases present upon quenching, for times ranging from 1 to 30 min and by using different heating rates up to the annealing temperature. It is concluded that best hysteretic properties can be achieved in samples quenched at intermediate cooling rates by means of short-time thermal treatments performed by using high heating rates up to the treatment temperature. Low heating rates and long time anneals led to the deterioration of the hard magnetic behavior, due to the segregation of soft crystalline phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Herbst, J. F., in Supermagnets, Hard Magnet Materials, edited by Long, G.J. and Grandjean, F. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 6994, and references therein.CrossRefGoogle Scholar
2Clavaguera-Mora, M.T., Diego, J. A., Baró, M. D., Surināach, S., Clavaguera, N., González, J.M., and Cebollada, F., J. Alloys & Compounds 182, 211221 (1992).CrossRefGoogle Scholar
3González, J.M., Cebollada, F., Martín, V.E., Leonato, M., Koehler, D., and Seeger, M., J. Magn. Magn. Mater. 101, 397398 (1991).CrossRefGoogle Scholar
4Clavaguera-Mora, M.T., Baró, M.D., Suriñach, S., Diego, J. A., González, J.M., and Cebollada, F., J. Magn. Magn. Mater. 104–107, 11411142 (1992).CrossRefGoogle Scholar
5Martin, V. E., Bernardi, J., Fidler, J., Cebollada, F., and González, J.M., J. Alloys & Compounds 191, 127130 (1993).CrossRefGoogle Scholar
6Taylor, R. C., McGuire, T. R., Coey, J. M. D., and Gangulee, A., J. Appl. Phys. 49 (5), 28852893 (1978).CrossRefGoogle Scholar
7Grönefeld, M. and Krönmuller, H., J. Magn. Magn. Mater. 88, L267 (1990).CrossRefGoogle Scholar
8Krönmuller, H., in Supermagnets, Hard Magnet Materials, edited by Long, G.J. and Grandjean, F. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 461498.CrossRefGoogle Scholar
9Givord, D., Lu, Q., and Rossignol, M. F., in Science and Technology of Nanostructured Magnetic Materials, edited by Hadjipanayis, G. C. and Prinz, G. A. (Plenum Press, New York, 1991), pp. 635656.CrossRefGoogle Scholar
10González, J.M. and Cebollada, F., Jpn. J. Appl. Phys (1994, in press).Google Scholar