Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:52:16.453Z Has data issue: false hasContentIssue false

Magnetic properties of uniform γ–Fe2O3 nanoparticles smaller than 5 nm prepared by laser pyrolysis

Published online by Cambridge University Press:  31 January 2011

M. P. Morales*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
S. Veintemillas-Verdaguer
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
C. J. Serna
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain
*
a) Address all correspondence to this author. e-mail: puerto@icmm.csic.es
Get access

Abstract

γ–Fe2O3 spherical particles with diameters between 5 and 3.5 nm—very uniform in size—have been prepared by laser pyrolysis of iron pentacarbonyl. The infrared spectra of the samples showed features that indicated different degrees of crystallinity according to the preparation conditions. Low saturation magnetization values (≈10 emu/g) and very high coercivities at low temperature (3000 Oe) have been found for the γ–Fe2O3 nanoparticles with the smaller particle size and the highest structural disorder. To explain the magnetic properties, it was necessary to consider additional anisotropies caused by the increase in surface and structural disorder as the particle size decreased.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ziolo, R.F., Giannelis, E.P., Weinstein, B.A., O'Horo, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W., and Huffman, D.R., Science 257, 219 (1992).CrossRefGoogle Scholar
2.Tronc, E., Il Nuovo Cimento 18D, 163 (1996).CrossRefGoogle Scholar
3.Leslie-Pelecky, D.L. and Rieke, R.D., Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar
4.Awschalom, D.D. and DiVincenzo, D.P., Physics Today, 4, 43 (1995).CrossRefGoogle Scholar
5.Weissleder, R. et al., Radiology 181, 245 (1991).CrossRefGoogle Scholar
6.Feltin, N. and Pileni, M.P., Langmuir 13, 3927 (1997).CrossRefGoogle Scholar
7.Bee, A., Massart, R., and Neveu, S., J. Magn. Magn. Mater. 149, 6 (1995).CrossRefGoogle Scholar
8.Jolivet, J.P., Vayssieres, L., Chaneac, C., and Tronc, E., in Aqueous Chemistry and Geochemistry of Oxides, Oxyhydroxides, and Related Materials, edited by Voigt, J.A., Wood, T.E., Bunker, B.C., Casey, W.H., and Crossey, L.J. (Mater. Res. Soc. Symp. Proc. 432, Pittsburgh, PA, 1996), p. 145.Google Scholar
9.Vollath, D., Szabó, D.V., Taylor, R.D., and Willis, J.O., J. Mater. Res. 12, 2175 (1997).CrossRefGoogle Scholar
10.Urakawa, T., Nakazawa, T., Inoue, H., Shirai, T., and Fluck, E., J. Mater. Sci. Letter. 15, 1237 (1996).CrossRefGoogle Scholar
11.Martínez, B., Roig, A., Obrador, X., Molins, E., Rouanet, A., and Monty, C., J. Appl. Phys. 79, 2580 (1996).CrossRefGoogle Scholar
12.Cao, X., Prozorov, P., Koltypin, Yu., Kataby, G., Felner, I., and Gendaken, A., J. Mater. Res. 12, 402 (1997).CrossRefGoogle Scholar
13.González-Carreño, T., Morales, M.P., Gracia, M., and Serna, C.J., Mater. Lett. 18, 151 (1993).CrossRefGoogle Scholar
14.Jönsson, B.J., Turkki, T., Ström, V., El-Shall, M.S., and Rao, K.V., J. Appl. Phys. 79, 5063 (1996).CrossRefGoogle Scholar
15.Morales, M.P., Serna, C.J., Bødker, F., and Mørup, S., J. Phys.: Condens. Matter 9, 5461 (1997).Google Scholar
16.Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., and Marra, R.A., J. Amer. Ceram. Soc. 65, 324 (1982).CrossRefGoogle Scholar
17.Cannon, W.R., Danforth, S.C., Haggerty, J.S., and Marra, R.A., J. Amer. Ceram. Soc. 65, 330 (1982).CrossRefGoogle Scholar
18.Cauchetier, M., Croix, O., Herlin, N., and Luce, M., J. Amer. Ceram. Soc. 77, 993 (1994).CrossRefGoogle Scholar
19.Bi, X-X., Ganguly, B., Huffman, G.P., Huggins, F.E., Endo, M., and Eklund, P.C., J. Mater. Res. 8, 1666 (1993).CrossRefGoogle Scholar
20.Zhao, X.Q., Zheng, F., Liang, Y., Hu, Z.Q., and Xu, Y.B., Mater. Lett. 21, 285 (1994).CrossRefGoogle Scholar
21.Zhao, X.Q., Zheng, F., Liang, Y., Hu, Z.Q., Xu, Y.B., and Zhang, G.B., Mater. Lett. 23, 305 (1995).CrossRefGoogle Scholar
22.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedure (Wiley & Sons, New York, 1954), Chap. 9.Google Scholar
23.Chantrell, R.W., Popplewell, J., and Charles, S.W., Physica 86–88B, 1421 (1977).Google Scholar
24.O'Grady, K. and Bradbury, A., J. Magn. Magn. Mater. 39, 91 (1983).CrossRefGoogle Scholar
25.Cornell, R.M. and Schwertmann, U., The Iron Oxides (VCH Publishers, New York, 1996), p. 30.Google Scholar
26.Morales, M.P., Pecharroman, C., González-Carreño, T., and Serna, C.J., J. Solid State Chem. 108, 158 (1994).CrossRefGoogle Scholar
27.Majima, T., Matsumoto, Y., and Takami, M., J. Photochem. Photobiol. A: Chem. 71, 213 (1993).CrossRefGoogle Scholar
28.Cullity, B.D., Introduction to Magnetic Materials (Addison–Wesley Publishing, CA, 1972), a) p. 410, b) p. 200.Google Scholar
29.Coey, J.M.D, Phys. Rev. Lett. 27, 1140 (1971).CrossRefGoogle Scholar
30.Martínez, B., Roig, A., Molins, E., González-Carreño, T., and Serna, C.J., J. Appl. Phys. 83, 3256 (1998).CrossRefGoogle Scholar
31.Morales, M.P., de Julián, C., González, J.M., and Serna, C.J., J. Mater. Res. 9, 135 (1994).CrossRefGoogle Scholar
32.Martínez, B., Obradors, S., Balcells, Ll., Rouanet, A., and Monty, C., Phys. Rev. Lett. 80, 181 (1998).CrossRefGoogle Scholar