Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T18:29:10.189Z Has data issue: false hasContentIssue false

Magnetic tunnel junctions using LaSrMnO ferromagnetic electrodes and PbZrTiO3 piezoelectric barrier

Published online by Cambridge University Press:  31 January 2011

A.K. Pradhan*
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504
M. Bahoura
Affiliation:
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504
*
a) Address all correspondence to this author. e-mail: apradhan@nsu.edu
Get access

Abstract

We report on the fabrication and tunneling characteristics of pulsed-laser deposited LaSrMnO (LSMO)/PbZrTiO(PZT)/LSMO/SrTiO3 magnetic tunnel junctions. The trilayer films show magnetic onset at about 360 K with ferromagnetic hysteresis and uniaxial magnetic behavior at room temperature. The microscopic studies show that the effective barrier thickness is reduced due to the presence of defects in the barrier region. Tunneling magnetoresistance measurements were performed on several samples. Our results suggest that the asymmetric deformation of the barrier potential profile induced by the ferroelectric polarization of PZT influences the tunneling characteristics and can be used for electrically controlled readout in quantum computing schemes.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boeve, H., van de Veerdonk, R.J.M., Dutta, B., De Boeck, J., Moodera, J., and Borghs, G.: Area scaling of planar ferromagnetic tunnel junctions: From shadow evaporation to lithographic microfabrication. J. Appl. Phys. 83, 6700 (1998).CrossRefGoogle Scholar
2.Moodera, J.S., Kinder, L.R., Nowak, J., LeClair, P., and Meservey, R.: Geometrically enhanced magnetoresistance in ferromagnet– insulator–ferromagnet tunnel junctions. Appl. Phys. Lett. 69, 708 (1996).CrossRefGoogle Scholar
3.Wong, P.K., Evetts, J.E., and Blamire, M.G.: High conductance magnetoresistive tunnel junctions with multiply oxidized barrier. J. Appl. Phys. 83, 6697 (1998).CrossRefGoogle Scholar
4.Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthélémy, A., and Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296 (2007).CrossRefGoogle ScholarPubMed
5. M. Ye. Zhuravlev, Sabirianov, R.F., Jaswal, S.S., and Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).Google Scholar
6.Velev, J.P., Duan, C-G., Belashchenko, K.D., Jaswal, S.S., and Tsymbal, E.Y.: Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. Phys. Rev. Lett. 98, 137201 (2007).CrossRefGoogle ScholarPubMed
7. M. Ye. Zhuravlev, Jaswal, S.S., Tsymbal, E.Y., and Sabirianov, R.F.: Ferroelectric switch for spin injection. Appl. Phys. Lett. 87, 222114 (2005).Google Scholar
8.Sun, J.Z., Krusin-Elbaum, L., Duncombe, P.R., Gupta, A., and Labowitz, R.B.: Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Appl. Phys. Lett. 70, 1769 (1997).CrossRefGoogle Scholar
9.Wertz, E.T. and Li, Q.: Magnetoresistance after initial demagnetization in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3 magnetic tunnel junctions. Appl. Phys. Lett. 90, 142506 (2007).CrossRefGoogle Scholar
10.Velev, J.P., Duan, C-G., Burton, J.D., Smogunov, A., Niranjan, M.K., Tosatti, E., Jaswal, S.S., and Tsymbal, E.Y.: Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles. Nano Lett. 9, 427 (2009).CrossRefGoogle ScholarPubMed
11.Urushibara, A., Moritomo, Y., Arita, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1–xSrxMnO3. Phys. Rev. B 51, 14103 (1995).CrossRefGoogle ScholarPubMed
12.Heremans, J.: Solid state magnetic field sensors and applications. J. Phys. D: Appl. Phys. 26, 1149 (1993).CrossRefGoogle Scholar
13.Jin, S., McCormack, M., Tiefel, T.H., and Ramesh, R.: Colossal magnetoresistance in La–Ca–Mn–O ferromagnetic thin films. J. Appl. Phys. 76, 6929 (1994).CrossRefGoogle Scholar
14.Fontcuberta, J., Martinez, B., Seffer, A., Pinol, S., Garcia-Munoz, J.L., and Obaradors, X.: Colossal magnetoresistance of ferromagnetic manganites: Structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122 (1996).CrossRefGoogle ScholarPubMed
15. J-Q.Wang, Barker, R.C., Cui, G-J., Tamagawa, T., and Halperm, B.L.: Doped rare-earth perovskite Mn films with colossal magnetoresistance. Appl. Phys. Lett. 71, 3418 (1997).Google Scholar
16.Pradhan, A.K., Hunter, D., Williams, T., Lasley-Hunter, B., Bah, R., Mustafa, H., Rakhimov, R., Zhang, J., Sellmyer, D.J., Carpenter, E.E., Sahu, D.R., and Huang, J-L.: Magnetic properties of La0.6Sr0.4MnO3 thin films on SrTiO3 and buffered Si substrates with varying thickness. J. Appl. Phys. 103, 023914 (2008).CrossRefGoogle Scholar
17.Wiedenhorst, A., C. Höfener, Lu, Y., Klein, J., Rao, M.S.R., Freitag, H., Mader, W., Alff, L., and Gross, R.: High-resolution transmission-electron-microscopy study on strained epitaxial manganite thin films and heterostructures. J. Magn. Magn. Mater. 211, 16 (2000).CrossRefGoogle Scholar
18.Izumi, M., Murakami, Y., Konishi, Y., Manako, T., Kawasaki, M., and Tokura, Y.: Structure characterization and magnetic properties of oxide superlattices La0.6Sr0.4MnO3/La0.6Sr0.4FeO3. Phys. Rev. B 60, 1211 (1999).CrossRefGoogle Scholar
19.Pradhan, A.K., Sahu, D., Roul, B.K., and Feng, Y.: La1–xBaxMnO3 epitaxial thin films by pulsed laser deposition: A consequence of strain stabilization. Appl. Phys. Lett. 81, 3597 (2002).CrossRefGoogle Scholar
20.Pradhan, A.K., Mohanty, S., Zhang, K., Dadson, J.B., Jackson, E.M., Hunter, D., Rakhimov, R.R., Loutts, G.B., Zhang, J., and Sellmyer, D.J.: Integration of epitaxial colossal magnetoresistive films onto Si(100) using SrTiO3 as a template layer. Appl. Phys. Lett. 86, 012503 (2005).CrossRefGoogle Scholar
21.Akerman, J.J., Roshchin, I.V., Slaughter, J.M., Dave, R.W., and Schuller, I.K.: Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 63, 104 (2003).CrossRefGoogle Scholar
22.Akerman, J.J., Slaughter, J.M., Dave, R.W., and Schuller, I.K.: Tunneling criteria for magnetic-insulator-magnetic structures. Appl. Phys. Lett. 79, 3104 (2001).CrossRefGoogle Scholar
23.Rabson, D.A., J, B.J.önsson-Åkerman, Escudero, R., Leighton, C., Kim, S., and Schuller, I.K.: Pinholes may mimic tunneling. J. Appl. Phys. 89, 2786 (2001).CrossRefGoogle Scholar
24.Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).CrossRefGoogle Scholar
25.Nagarajan, V., Junquera, J., He, J.Q., Jia, C.L., Waser, R., Lee, K., Kim, Y.K., Baik, S., Zhao, T., Ramesh, R., Ph. Ghosez, and Rabe, K.M.: Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures. J. Appl. Phys. 100, 051609 (2006).CrossRefGoogle Scholar
26.Kohlstedt, H., Pertsev, N.A., J. Rodríguez Contreras, and Waser, R.: Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).CrossRefGoogle Scholar