Published online by Cambridge University Press: 31 January 2011
Biosensors based on lipid membranes promise an inexpensive and versatile platform for application in many fields of molecular sensing. An extensive review of the applications for tethered membranes was reported in the July 2006 MRS Bulletin [A.N. Parikh and J.T. Groves, Materials science of supported lipid membranes. MRS Bull.31(8), 507 (2006)]. The commercial use to which tethered lipid membranes have been applied has been limited by their stability under long-term storage. This report describes a novel membrane construct that is stable at room temperature for months, eliminates the mobile lipid phase present in lipid bilayers, and is robust against detergents under conditions that would destroy a lipid bilayer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.