Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T21:10:23.100Z Has data issue: false hasContentIssue false

Measuring optical properties of individual SnO2 nanowires via valence electron energy-loss spectroscopy

Published online by Cambridge University Press:  15 May 2017

Derek R. Miller
Affiliation:
Materials Science and Engineering Department, The Ohio State University, Columbus 43210, Ohio, USA
Robert E. Williams
Affiliation:
Materials Science and Engineering Department, The Ohio State University, Columbus 43210, Ohio, USA; and Center for Electron Microscopy and AnalysiS (CEMAS), The Ohio State University, Columbus 43212, Ohio, USA
Sheikh A. Akbar
Affiliation:
Materials Science and Engineering Department, The Ohio State University, Columbus 43210, Ohio, USA
Pat A. Morris
Affiliation:
Materials Science and Engineering Department, The Ohio State University, Columbus 43210, Ohio, USA
David W. McComb*
Affiliation:
Materials Science and Engineering Department, The Ohio State University, Columbus 43210, Ohio, USA; and Center for Electron Microscopy and AnalysiS (CEMAS), The Ohio State University, Columbus 43212, Ohio, USA
*
a) Address all correspondence to this author. e-mail: mccomb.29@osu.edu
Get access

Abstract

For the first time, valence electron energy-loss spectroscopy (VEELS) was applied to individual single-crystalline SnO2 nanowires to investigate the dielectric function, band gap, and optical absorption coefficient. The results are compared with data from optical techniques such as spectroscopic ellipsometry and UV-Vis, and theoretical calculations from variations of density functional theory. The data obtained agree well with the standard optical and theoretical techniques. The dielectric function and optical absorption coefficient are given up to 20 eV, which otherwise requires a synchrotron source and large single crystals via optical methods. The energy loss function is given up to 40 eV, which gives a useful comparison to previous theoretical studies in an energy range that cannot be achieved via optical measurements. The comparison gives confidence in the accuracy of this method for exploring spatially-resolved measurements in individual nanoparticles or more complex nanostructures that are otherwise difficult to measure accurately using optical techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

Klein, A., Körber, C., Wachau, A., Säuberlich, F., Gassenbauer, Y., Harvey, S.P., Proffit, D.E., and Mason, T.O.: Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment. Materials 3, 4892 (2010).CrossRefGoogle ScholarPubMed
Korotcenkov, G. and Cho, B.K.: Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study. Sens. Actuators, B 196, 80 (2014).CrossRefGoogle Scholar
Wu, C.H. and Ng, H.Y.: Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes. J. Hazard. Mater. 151, 507 (2008).Google Scholar
Liu, R., Chen, Y., Wang, F., Cao, L., Pan, A., Yang, G., Wang, T., and Zou, B.: Stimulated emission from trapped excitons in SnO2 nanowires. Phys. E 39, 223 (2007).Google Scholar
He, J.H., Wu, T.H., Hsin, C.L., Li, K.M., Chen, L.J., Chueh, Y.L., Chou, L.J., and Wang, Z.L.: Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2, 116 (2006).Google Scholar
Lee, S.Y., Shin, Y.H., Kim, Y., Kim, S., and Ju, S.: Emission characteristics of diameter controlled SnO2 nanowires. J. Lumin. 131, 2565 (2011).Google Scholar
Das, S. and Jayaraman, V.: SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112 (2014).Google Scholar
Krivanek, O.L., Lovejoy, T.C., Murfitt, M.F., Skone, G., Batson, P.E., and Dellby, N.: Towards sub-10 meV energy resolution STEM-EELS. J. Phys.: Conf. Ser. 522, 12023 (2014).Google Scholar
Wang, J., Li, Q., and Egerton, R.F.: Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy. Micron 38, 346 (2007).Google Scholar
Liu, Q., March, K., and Crozier, P.A.: Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy. Ultramicroscopy 178, 211 (2017).CrossRefGoogle ScholarPubMed
Rafferty, B. and Brown, L.: Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 10326 (1998).CrossRefGoogle Scholar
Borges, P.D., Scolfaro, L.M.R., Leite Alves, H.W., and Da Silva, E.F.: Electronic structure and dielectric properties calculations of pure tin dioxide and of vacancies in tin dioxide. AIP Conf. Proc. 1199, 124 (2009).Google Scholar
Schleife, A., Varley, J., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., and Van de Walle, C.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 1 (2011).Google Scholar
Nabi, Z., Kellou, A., Méçabih, S., Khalfi, A., and Benosman, N.: Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds. Mater. Sci. Eng., B 98, 104 (2003).Google Scholar
Canestraro, C.D., Roman, L.S., and Persson, C.: Polarization dependence of the optical response in SnO2 and the effects from heavily F doping. Thin Solid Films 517, 6301 (2009).CrossRefGoogle Scholar
Feneberg, M., Lidig, C., Lange, K., Goldhahn, R., Neumann, M.D., Esser, N., Bierwagen, O., White, M.E., Tsai, M.Y., and Speck, J.S.: Ordinary and extraordinary dielectric functions of rutile SnO2 up to 20 eV. Appl. Phys. Lett. 104, 2 (2014).CrossRefGoogle Scholar
Cox, D.F. and Hoflund, G.B.: An electronic and structural interpretation of tin oxide ELS Spectra. Surf. Sci. 151, 202 (1985).Google Scholar
Chetri, P. and Choudhury, A.: Investigation of optical properties of SnO2 nanoparticles. Phys. E 47, 257 (2013).Google Scholar
Park, Y.R. and Kim, K.J.: Sputtering growth and optical properties of [100]-oriented tetragonal SnO2 and its Mn alloy films. J. Appl. Phys. 94, 6401 (2003).Google Scholar
Reimann, K. and Steube, M.: Experimental determination of the electronic band structure of SnO2 . Solid State Commun. 105, 649 (1998).Google Scholar
Nagasawa, M. and Shionoya, S.: Exciton structure in optical absorption of SnO2 crystals. Phys. Lett. 22, 409 (1966).CrossRefGoogle Scholar
Robertson, J.: Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2 . J. Phys. C: Solid State Phys. 12, 4767 (1979).CrossRefGoogle Scholar
Miller, D.R., Williams, R.E., Akbar, S.A., Morris, P.A., and Mccomb, D.W.: STEM-cathodoluminescence of SnO2 nanowires and powders. Sens. Actuators, B 240, 193 (2017).Google Scholar
Mathur, S. and Barth, S.: Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. Small 3, 2070 (2007).Google Scholar
Yu, W.D., Li, X.M., and Gao, X.D.: Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology 16, 2770 (2005).Google Scholar
Kar, A., Stroscio, M.A., Meyyappan, M., Gosztola, D.J., Wiederrecht, G.P., and Dutta, M.: Tailoring the surface properties and carrier dynamics in SnO2 nanowires. Nanotechnology 22, 285709 (2011).Google Scholar
Egerton, R.F.: New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34, 127 (2003).CrossRefGoogle ScholarPubMed
Egerton, R.F.: Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575 (2007).CrossRefGoogle Scholar
Egerton, R.F.: Electron Energy-loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, Dordrecht, Heidelberg, London, 2011).Google Scholar
Tsokkou, D., Othonos, A., and Zervos, M.: Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 100, 133101 (2012).Google Scholar
Goldsmith, S., Çetinörgü, E., and Boxman, R.L.: Modeling the optical properties of tin oxide thin films. Thin Solid Films 517, 5146 (2009).CrossRefGoogle Scholar
Stöger-Pollach, M.: Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39, 1092 (2008).Google Scholar
Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 16502 (2009).Google Scholar
Daniels, H., Brown, A., Scott, A., Nichells, T., Rand, B., and Brydson, R.: Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy. Ultramicroscopy 96, 523 (2003).Google Scholar
Liberti, E., Menzel, R., Shaffer, M.S.P., and McComb, D.: Probing the size dependence on the optical modes of anatase nanoplatelets using STEM-EELS. Nanoscale 8, 9727 (2016).Google Scholar
Hage, F.S., Ramasse, Q.M., Kepaptsoglou, D.M., Prytz, O., Gunnaes, A.E., Helgesen, G., and Brydson, R.: Topologically induced confinement of collective modes in multilayer graphene nanocones measured by momentum-resolved STEM-VEELS. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 1 (2013).Google Scholar
Najafi, E., Hitchcock, A.P., Rossouw, D., and Botton, G.A.: Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss spectromicroscopy. Ultramicroscopy 113, 158 (2012).CrossRefGoogle Scholar
Schattschneider, P., Hébert, C., Franco, H., and Jouffrey, B.: Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 045142 (2005).Google Scholar
Murphy, A.B.: Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Appl. Opt. 46, 3133 (2007).CrossRefGoogle ScholarPubMed
Zarrinkhameh, M., Zendehnam, A., Hosseini, S.M., Robatmili, N., and Arabzadegan, M.: Effect of oxidation and annealing temperature on optical and structural properties of SnO2 . Bull. Mater. Sci. 37, 533 (2014).Google Scholar
Sundaram, K.B. and Bhagavat, G.K.: Optical absorption studies on tin oxide films. J. Phys. D: Appl. Phys. 14, 921 (1981).Google Scholar
López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).CrossRefGoogle Scholar
Roman, L.S., Valaski, R., Canestraro, C.D., Magalhães, E.C.S., Persson, C., Ahuja, R., da Silva, E.F., Pepe, I., and da Silva, A.F.: Optical band-edge absorption of oxide compound SnO2 . Appl. Surf. Sci. 252, 5361 (2006).Google Scholar
Baco, S., Chik, A., and Md Yassin, F.: Study on optical properties of tin oxide thin film at different annealing temperature. J. Sci. Technol. 4, 61 (2012).Google Scholar
Tauc, J., Grigorovici, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966).CrossRefGoogle Scholar
Borges, P.D., Scolfaro, L.M.R., Leite Alves, H.W., and Silva, E.F.: DFT study of the electronic, vibrational, and optical properties of SnO2 . Theor. Chem. Acc. 126, 39 (2010).Google Scholar
Liu, Q.J., Liu, Z.T., and Feng, L.P.: First-principles calculations of structural, electronic and optical properties of tetragonal SnO2 and SnO. Comput. Mater. Sci. 47, 1016 (2010).Google Scholar