Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T02:55:00.938Z Has data issue: false hasContentIssue false

Mechanical and chemical effects of solute elements on generalized stacking fault energy of Mg

Published online by Cambridge University Press:  08 October 2014

Motohiro Yuasa*
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan
Yasumasa Chino
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan
Mamoru Mabuchi
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
*
a)Address all correspondence to this author. e-mail: m-yuasa@aist.go.jp
Get access

Abstract

First-principles shear tests were performed on pure Mg, Mg–Li, Mg–Ca, Mg–Al, Mg–Sn, Mg–Ag, and Mg–Zn models to investigate the mechanical and chemical effects of the solute elements on the generalized stacking fault energy (GSFE) of Mg. The mechanical effect increased the unstable stacking fault energy (USFE), independent of the kind of solute element tested. The intensity of the mechanical effect was explained by the average distance between a solute atom and the surrounding Mg atoms, not by a difference in atomic radius between a solute atom and a Mg atom. In contrast, the chemical effect on the USFE was complicated, and the chemical effects of Ag and Zn were lower than expected from their electronegativity. Also, the chemical effect increased the USFE for the Li addition, but it decreased the USFE for the Ca addition although the electronegativity of Li is almost the same as that of Ca.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
Wu, R., Freeman, A.J., and Olson, G.B.: First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265, 376 (1994).CrossRefGoogle ScholarPubMed
Geng, W.T., Freeman, A.J., Wu, R., Geller, C.B., and Raynolds, J.E.: Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary. Phys. Rev. B 60, 7149 (1999).Google Scholar
Shang, J.X. and Wang, C.Y.: Electronic effects of alloying elements Nb and V on body-centred-cubic Fe grain boundary cohesion. J. Phys.: Condens. Matter 13, 9635 (2001).Google Scholar
Schweinfest, R., Paxton, A.T., and Finnis, M.W.: Bismuth embrittlement of copper is an atomic size effect. Nature 432, 1008 (2004).Google Scholar
Duscher, G., Chisholm, M.F., Alber, U., and Ruhle, M.: Bismuth-induced embrittlement of copper grain boundaries. Nat. Mater. 3, 621 (2004).Google Scholar
Braithwaite, J.S. and Rez, P.: Grain boundary impurities in iron. Acta Mater. 53, 2715 (2005).Google Scholar
Lozovoi, A.Y., Paxton, A.T., and Finnis, M.W.: Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper. Phys. Rev. B 74, 155416 (2006).Google Scholar
Lozovoi, A.Y. and Paxton, A.T.: Boron in copper: A perfect misfit in the bulk and cohesion enhancer at a grain boundary. Phys. Rev. B 77, 165413 (2008).CrossRefGoogle Scholar
Wachowicz, E. and Kiejna, A.: Effect of impurities on grain boundary cohesion in bcc iron. Comput. Mater. Sci. 43, 736 (2008).Google Scholar
Wachowicz, E., Ossowski, T., and Kiejna, A.: Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys. Rev. B 81, 094104 (2010).Google Scholar
Razumovskiy, V.I., Ruban, A.V., Razumovskii, I.M., Lozovoi, A.Y., Butrim, V.N., and Vekilov, Y.K.: The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: An ab initio study. Scr. Mater. 65, 926 (2011).Google Scholar
Tian, Z.X., Yan, J.X., Hao, W., and Xiao, W.: Effect of alloying additions on the hydrogen-induced grain boundary embrittlement in iron. J. Phys.: Condens. Matter 23, 015501 (2011).Google Scholar
Zhong, L., Wu, R., Freeman, A.J., and Olson, G.B.: Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron. Phys. Rev. B 62, 13938 (2000).Google Scholar
Yuasa, M., Amemiya, T., and Mabuchi, M.: Enhanced grain boundary embrittlement of an Fe grain boundary segregated by hydrogen (H). J. Mater. Res. 27, 1589 (2012).Google Scholar
Mryasov, O.N., Gronostyrev, Y.N., and Freeman, A.J.: Generalized stacking-fault energetics and dislocation properties: Compact versus spread unit-dislocation structures in TiAl and CuAu. Phys. Rev. B 58, 11927 (1998).Google Scholar
Lu, G., Kioussis, N., Bulatov, V.V., and Kaxiras, E.: Generalized-stacking-fault energy surface and dislocation properties of aluminium. Phys. Rev. B 62, 3099 (2000).Google Scholar
Manh, D.N., Cawkwell, M.J., Groger, R., Mrovec, M., Porizek, R., Perrifor, D.G., and Vitek, V.: Dislocations in materials with mixed covalent and metallic bonding. Mater. Sci. Eng., A 400, 68 (2005).Google Scholar
Siegel, D.J.: Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl. Phys. Lett. 87, 121901 (2005).CrossRefGoogle Scholar
Kibey, S., Liu, J.B., Johnson, D.D, and Sehitoglu, H.: Generalized planar fault energies and twinning in Cu–Al alloys. Appl. Phys. Lett. 89, 191911 (2006).CrossRefGoogle Scholar
Finkenstadt, D. and Johnson, D.D.: Solute/defect-mediated pathway for rapid nanoprecipitation in solid solutions: γ surface analysis in fcc Al-Ag. Phys. Rev. B 73, 024101 (2006).Google Scholar
Wu, X.Z., Wang, R., Wang, S.F., and Wei, Q.Y.: Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for FCC metals. Appl. Surf. Sci. 256, 6345 (2010).Google Scholar
Muzyk, M., Pakiela, Z., and Kurzydlowski, K.J.: Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr. Mater. 64, 916 (2011).Google Scholar
Chino, Y., Sassa, K., and Mabuchi, M.: Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y. Mater. Sci. Eng., A 513514, 394 (2009).Google Scholar
Chino, Y., Huang, X., Suzuki, K., Sassa, K., and Mabuchi, M.: Influence of Zn concentration on stretch formability at room temperature of Mg–Zn–Ce alloy. Mater. Sci. Eng., A 528, 566 (2010).Google Scholar
Wu, D., Chen, R.S., and Han, E.H.: Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J. Alloy Compd. 509, 2856 (2011).CrossRefGoogle Scholar
Chino, Y., Ueda, T., Otomatsu, Y., Sassa, K., Huang, X., Suzuki, K., and Mabuchi, M.: Effects of Ca on tensile properties and stretch formability at room temperature in Mg-Zn and Mg-Al alloys. Mater. Trans. 52, 1477 (2011).Google Scholar
Uesugi, T., Kohyama, M., Kohzu, M., and Higashi, K.: Generalized stacking fault energy and dislocation properties for various slip systems in magnesium: A first-principles study. Mater. Sci. Forum 419, 225 (2003).CrossRefGoogle Scholar
Wen, L., Chen, P., Tong, Z.F., Tang, B.Y., Peng, L.M., and Ding, W.J.: A systematic investigation of stacking faults in magnesium via first-principles calculation. Eur. Phys. J. B 72, 397 (2009).Google Scholar
Yasi, J.A., Nogaret, T., Trinkle, D.R., Qi, Y., Hector, L.G. Jr., and Curtin, W.A.: Basal and prism dislocation cores in magnesium: Comparison of first-principles and embedded-atom-potential methods predictions. Modell. Simul. Mater. Sci. Eng. 17, 055012 (2009).Google Scholar
Wu, X., Wang, R., and Wang, S.: Generalized-stacking-fault energy and surface properties for HCP metals: A first-principles study. Appl. Surf. Sci. 256, 3409 (2010).Google Scholar
Han, J., Su, X.M., Jin, Z.H., and Zhu, Y.T.: Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scr. Mater. 64, 693 (2011).Google Scholar
Wang, H.Y., Zhang, N., Wang, C., and Jiang, Q.C.: First-principles study of the generalized stacking fault energy in Mg–3Al–3Sn alloy. Scr. Mater. 65, 723 (2011).Google Scholar
Muzyk, M., Pakiela, Z., and Kurzydlowski, K.J.: Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scr. Mater. 66, 219 (2012).Google Scholar
Zhang, Q., Fan, T.W., Fu, L., Tang, B.Y., Peng, L.M., and Ding, W.J.: Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Intermetallics 29, 21 (2012).Google Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).Google Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964).Google Scholar
Kohn, W. and Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965).Google Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).Google Scholar
Monkhhost, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
Vitek, V.: Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773 (1968).CrossRefGoogle Scholar
Vitek, V.: Theory of the core structures of dislocations in body-centered-cubic metals. Cryst. Lattice Defects 5, 1 (1974).Google Scholar
Iikubo, S., Matsuda, K., and Ohtani, H.: Phase stability of long-period stacking structures in Mg-Y-Zn: A first-principles study. Phys. Rev. B 86, 054105 (2012).Google Scholar
Metals Data Book, 2nd ed. (Maruzen, Tokyo, Japan, 1984), p. 8.Google Scholar
Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961).Google Scholar
Zamora, R.J., Nair, A.K., Hennig, R.G., and Warne, D.H.: Ab initio prediction of environmental embrittlement at a crack tip in aluminium. Phys. Rev. B 86, 060101 (2012).CrossRefGoogle Scholar
Eberhart, M.E.: The metallic bond: Elastic properties. Acta Mater. 44, 2495 (1996).CrossRefGoogle Scholar
Kioussis, N., Herbranson, M., Collins, W., and Eberhart, M.E.: Topology of electronic charge density and energetics of planar faults in fcc metals. Phys. Rev. Lett. 88, 125501 (2002).CrossRefGoogle ScholarPubMed
Eberhart, M.E., Clogherty, D.P., and MacLaren, J.M.: A theoretical investigation of the mechanisms of fracture in metals and alloys. J. Am. Chem. Soc. 115, 5762 (1993).Google Scholar