Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T04:53:32.007Z Has data issue: false hasContentIssue false

Mechanical properties and microtructure of sputter-deposited Nb5Si3/Nb microlaminates

Published online by Cambridge University Press:  03 March 2011

S.P. Rawal
Affiliation:
Martin Marietta Astronautics, P.O. Box 179, Denver, Colorado 80201
G.M. Swanson
Affiliation:
Martin Marietta Astronautics, P.O. Box 179, Denver, Colorado 80201
W.C. Moshier
Affiliation:
Martin Marietta Astronautics, P.O. Box 179, Denver, Colorado 80201
Get access

Abstract

Crystalline Nb5Si3/Nb microlaminates were fabricated to a thickness of 20 μm by depositing the materials onto elevated temperature (750 °C) substrates. Modulation wavelengths of the microlaminates were varied (λ = 40 and 200 nm) while holding their silicide volume fraction constant to assess the effect of layer thickness on the composite properties. X-ray and selected area diffraction confirmed that both the metal and silicide layers exhibited a polycrystalline structure in the as-deposited microlaminates. Nanoindentation measurements of both microlaminates indicated that calculated elastic modulus values were similar to the values obtained by the rule-of-mixtures (ROM). Nanohardness values of the microlaminates increased with decreasing wavelength in a manner described by the Hall-Petch relationship. Vickers hardness (Hv) measurements were also found to be a function of the modulation wavelength, decreasing from 7.32 GPa at λ = 40 nm to 3.04 GPa at λ = 200 nm. Even with a Nb volume fraction of 50%, the λ = 40 nm microlaminate and the monolithic Nb5Si3 film exhibited similar Vickers hardness values of 7.5 GPa. These results show the significant role of modulation wavelength on the hardness, compressive strength, and toughness characteristics of a microlaminate composite.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xiao, L. and Abbaschian, R., Mater. Sci. Eng. A155, 135145(1992).CrossRefGoogle Scholar
2Maxwell, W. A. and Smith, R. W., NACA RM E52 F26 (1952).Google Scholar
3Fitzer, E., Rubisch, O., Schlichting, J., and Sewdas, I., Sci. Ceram. 6, XVIII (1973).Google Scholar
4Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68, C200 (1985).Google Scholar
5Yang, J. M. and Jeng, S. M., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 139.Google Scholar
6Richardson, K. K. and Freitag, D. W., Ceram. Eng. Sci. Proc. 12(9–10), 1679 (1991).CrossRefGoogle Scholar
7Gibala, R. et al, Mater. Sci. Eng. A155, 147158 (1992).Google Scholar
8Alman, D. E., Shaw, K. G., Sroloft, N. S., and Rajan, K., Mater. Sci.Eng. A155, 8593 (1992).Google Scholar
9Mescheter, D. J. and Schwartz, D. S., J. Met. 11, 52 (1984).Google Scholar
10Siemers, D. A., Jackson, M. R., Mohan, R. L., and Rairden, J. R., Ceram. Eng. Soc. Proc. 6, 896 (1985).Google Scholar
11Tiwari, R., Sampath, S., and Harman, H., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 807.Google Scholar
12Henager, C. H. Jr., Brimhall, J. L., and Hirth, J. P., Mater. Sci. Eng. A155, 109114 (1992).Google Scholar
13Shobu, K., Tsuhi, K., and Watanabe, T., Ceramic Developments, edited by Sorrell, C. C. and Ben-Nissan, B. (Trans. Tech. Publications, Aedermannsdorf, 1988), p. 675.Google Scholar
14Brupbacher, J. M., Christodoulou, L., and Nagle, D. C., US Patent 4710 348 (1987).Google Scholar
15Christodoulou, L., Nagle, D. C., and Brupbacher, J.M., US Patent 4774052 (1988).Google Scholar
16Nagle, D. C., Brupbacher, J. M., and Christodoulou, L., US Patent 4916029 (1990).Google Scholar
17Shaw, L. and Abbaschian, R., Acta Metall. Mater. 42(1), 213223 (1994).Google Scholar
18Vasudevan, A. K. and Petrovic, J. J., Mater. Sci. Eng. A155, 118 (1992).Google Scholar
19Maloney, M. J. and Hecht, R. J., Mater. Sci. Eng. A155, 1932 (1992).CrossRefGoogle Scholar
20Alman, D. E., Shaw, K. G., Stoloff, N. S., and Rajan, K., Mater. Sci. Eng. A155, 8594 (1992).CrossRefGoogle Scholar
21Henager, C. H. Jr., Brimhall, J. L., and Hirth, J. P., Mater. Sci. Eng. A155, 109114 (1992).CrossRefGoogle Scholar
22Petrovic, J. J. and Honnell, R. E., Ceram. Eng. Sci. Proc. 11, 734744 (1990).CrossRefGoogle Scholar
23Mendiratta, M. G. and Dimiduk, D. M., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), pp. 441446.Google Scholar
24Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Metall. Trans. A22, 15731583 (1991).Google Scholar
25Kajuch, J., Rigney, J. D., and Lewandowski, J.J., Mater. Sci. Eng. A155, 59 (1992).Google Scholar
26Chou, T. C., Nieh, T. G., McAdams, S.D., Pharr, G. M., and Oliver, W.C., J. Mater. Res. 7, 27742784 (1992).CrossRefGoogle Scholar
27Chou, T. C., Nieh, T. G., Tsui, T. Y., Pharr, G. M., and Oliver, W. C., J. Mater. Res. 7, 27652773 (1992).Google Scholar
28Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadri, S. G., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
29Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).CrossRefGoogle Scholar
30Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
31Schuller, I. K. and Grimsditch, M., J. Vac. Sci. Technol. B 4, 1444 (1986).CrossRefGoogle Scholar
32Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbins, S. E., Wagner, R. W., Cammarata, J. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44, 13760 (1991).Google Scholar
33National Research Council (NMAB-454, National Academy Press, Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145), (1987), p. 78.Google Scholar
34Helmersson, U., Todorova, S., Barnett, S. A., Aundgren, J. E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).Google Scholar
35Thermophysical Properties of Matter, Vol. 7, Thermal Radiative Properties, Metallic Elements and Alloys, edited by Touloukian, Y. S. and DeWitt, D.P. (Plenum Publishing Corp., New York, 1970).Google Scholar
36Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy, 2nd ed. (Physical Electronics Division, Perkin-Elmers Corp., Eden Prairie, MN, 1978).Google Scholar
37Pharr, G. M. and Oliver, W. C., MRS Bull. XVII (7), 2833 (July 1992).Google Scholar
38Lewis, C. F., Material Eng., 31 (Oct. 1990).Google Scholar
39Thin Film Processes, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1978).Google Scholar
40Rawal, S. P., Moshier, W. C., Swanson, G. M., and Misra, M.S., unpublished work.Google Scholar
41Milman, Y., Galanov, B., and Chugunova, S. I., Acta Metall. Mater. 41(9), 25232532 (1993).Google Scholar
42Rice, R. W., The Science of Hardness Testing and its Research Applications, edited by Westbrook, J. H. and Conrad, H. (ASM, Metals Park, OH, Oct. 1971).Google Scholar
43Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar