Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T18:34:23.317Z Has data issue: false hasContentIssue false

Mechanical properties of bulk metallic glasses and composites

Published online by Cambridge University Press:  03 March 2011

J. Eckert*
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 270116, D-01171 Dresden, Germany
J. Das
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 270116, D-01171 Dresden, Germany
S. Pauly
Affiliation:
IFW Dresden, Institut für Komplexe Materialien, Postfach 270116, D-01171 Dresden, Germany; and FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
C. Duhamel
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and IFW Dresden, Institut für Komplexe Materialien, Postfach 270116, D-01171 Dresden, Germany
*
a)Address all correspondence to this author.e-mail: j.eckert@ifw-dresden.de
Get access

Abstract

The development of bulk metallic glasses and composites for improving the mechanical properties has occurred with the discovery of many ductile metallic glasses and glass matrix composites with second phase dispersions with different length scales. This article reviews the processing, microstructure development, and resulting mechanical properties of Zr-, Ti-, Cu-, Mg-, Fe-, and Ni-based glassy alloys and also considers the superiority of composite materials containing different phases for enhancing the strength, ductility, and toughness, even leading to a “work-hardening-like” behavior. The morphology, shape, and length scale of the second phase dispersions are crucial for the delocalization of shear bands. The article concludes with some comments regarding future directions of the investigations of spatially inhomogeneous metallic glasses.

Type
Reviews
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kramer, J.: Nonconducting modifications of metals. Ann. Physik (Berlin, Germany) 19, 37 (1934).CrossRefGoogle Scholar
2Brenner, A., Couch, D.E., and Williams, E.K.: Electrodeposition of alloys of phosphorus with nickel or cobalt. J. Res. Nat. Bur. Stand. 44, 109 (1950).CrossRefGoogle Scholar
3Buckel, W. and Hilsch, R.: On the superconductivity of copper sulfide. Z. Physik 128, 324 1950, (in German).CrossRefGoogle Scholar
4Buckel, W. and Hilsch, R.: Superconductivity and resistivity of tin with lattice distortion. Z. Physik 131, 420 1952, (in German).CrossRefGoogle Scholar
5Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
6Duwez, P., Willens, R.H., and Crewdson, R.C.: Amorphous phase in palladium-silicon alloys. J. Appl. Phys. 36, 2267 (1965).CrossRefGoogle Scholar
7Chen, H.S.: Thermodynamic considerations on formation and stability of metallic glasses. Acta Metall. 22, 1505 (1974).CrossRefGoogle Scholar
8Drehman, A.J., Greer, A.L., and Turnbull, D.: Bulk formation of a metallic-glass Pd40Ni40P20. Appl. Phys. Lett. 41, 716 (1982).CrossRefGoogle Scholar
9Inoue, A., Zhang, T., and Masumoto, T.: Al–La–Ni amorphous-alloys with a wide supercooled liquid region. Mater. Trans., JIM 30, 965 (1989).CrossRefGoogle Scholar
10Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T.: Mg–Cu–Y bulk amorphous-alloys with high-tensile strength produced by a high-pressure die-casting method. Mater. Trans., JIM 33, 937 (1992).CrossRefGoogle Scholar
11Peker, A. and Johnson, W.L.: A highly processable metallic glass, Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
12Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans., JIM 34, 1234 (1993).CrossRefGoogle Scholar
13Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).CrossRefGoogle Scholar
14Davis, L.A.: Hardness/strength ratio of metallic glasses. Scripta Metall. 9, 431 (1975).CrossRefGoogle Scholar
15Donovan, P.E.: Plastic-flow and fracture of Pd40Ni40P20 metallic glass under an indenter. J. Mater. Sci. 24, 523 (1989).CrossRefGoogle Scholar
16Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
17Conner, R.D., Rosakis, A.J., Johnson, W.L., and Owen, D.M.: Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Mater. 37, 1373 (1997).CrossRefGoogle Scholar
18Wesseling, P., Nieh, T.G., Wang, W.H., and Lewandowski, J.J.: Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Mater. 51, 151 (2004).CrossRefGoogle Scholar
19Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).CrossRefGoogle ScholarPubMed
20Kimura, H. and Masumoto, T.: Deformation and fracture of an amorphous Pd–Cu–Si alloy in v-notch bending tests II ductile-brittle transition. Acta Metall. 28, 1677 (1980).CrossRefGoogle Scholar
21Shek, C.H., Lin, G.M., Lee, K.L., and Lai, J.K.L.: Fractal fracture of amorphous Fe46Ni32V2Si14B6 alloy. J. Non-Cryst. Solids 224, 244 (1998).CrossRefGoogle Scholar
22Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).CrossRefGoogle Scholar
23Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
24Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L.: Quasistatic constitutive behavior of Zr41.2Ti13.8Cu12.5 Ni10.0Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).CrossRefGoogle Scholar
25Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
26Kühn, U., Eckert, J., Mattern, N., and Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 (2002).CrossRefGoogle Scholar
27Eckert, J., Kühn, U., Mattern, N., He, G., and Gebert, A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallic 10, 1183 (2002).CrossRefGoogle Scholar
28Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).CrossRefGoogle Scholar
29Koch, C.C., Cavin, O.B., Mckamey, C.G., and Scarbrough, J.O.: Preparation of amorphous Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
30Eckert, J.: Mechanical alloying of highly processable glassy alloys. Mater. Sci. Eng., A 226, 364 (1997).CrossRefGoogle Scholar
31Miller, S.A. and Murphy, R.J.: Gas-water atomization process for producing amorphous powders. Scripta Metall. 13, 673 (1979).CrossRefGoogle Scholar
32Luborsky, F.E.: Amorphous Metallic Alloys (Butterworths, London, UK, 1983).CrossRefGoogle Scholar
33Schultz, L. and Eckert, J.: Mechanically alloyed glassy metals, in Glassy Metals III: Amorphization Techniques, Catalysis, Electronic and Ionic Structure edited by Beck, H. and Gütherodt, H.J. (Springer-Verlag, Berlin, Germany, 1994), p. 70.Google Scholar
34Eckert, J., Schultz, L., Hellstern, E., and Urban, K.: Glass-forming range in mechanically alloyed Ni-Zr and the influence of the milling intensity. J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
35Eckert, J., Seidel, M., Schlorke, N., Kübler, A., and Schultz, L.: Solid state processing of bulk metallic glass forming alloys. Mater. Sci. Forum 235, 23 (1997).Google Scholar
36Xing, L.Q., Eckert, J., Löser, W., and Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
37Xing, L.Q., Eckert, J., Löser, W., Schultz, L., and Herlach, D.M.: Crystallization behaviour and nanocrystalline microstructure evolution of a Zr57Cu20Al10Ni8Ti5 bulk amorphous alloy. Philos. Mag. A 79, 1095 (1999).CrossRefGoogle Scholar
38Saida, J., Matsushita, M., Zhang, T., Inoue, A., Chen, M.W., and Sakurai, T.: Precipitation of icosahedral phase from a supercooled liquid region in Zr65Cu7.5Al7.5Ni10Ag10 metallic glass. Appl. Phys. Lett. 75, 3497 (1999).CrossRefGoogle Scholar
39Boucharat, N., Hebert, R., Rosner, H., Valiev, R., and Wilde, G.: Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation. Scripta Mater. 53, 823 (2005).CrossRefGoogle Scholar
40Wilde, G., Boucharat, N., Dinda, G.P., Rosner, H., and Valiev, R.Z.: New routes for synthesizing massive nanocrystalline materials. Mater. Sci. Forum 503–504, 425 (2006).CrossRefGoogle Scholar
41Lee, M.H., Bae, D.H., Kim, W.T., Kim, D.H., Rozhkova, E., Wheelock, P.B., and Sordelet, D.J.: Synthesis of Ni-based bulk amorphous alloys by warm extrusion of amorphous powders. J. Non-Cryst. Solids 315, 89 (2003).CrossRefGoogle Scholar
42Kawamura, Y., Inoue, A., Sasamori, K., Katoh, A., and Masumoto, T.: High-strength crystalline aluminum-alloys produced from amorphous powder by a closed P/M processing. Mater. Trans., JIM 34, 969 (1993).CrossRefGoogle Scholar
43Eckert, J., Boer, N. Schlorke-de, Weiss, B., and Schultz, L.: Mechanically alloyed Mg-based metallic glasses and metallic glass composites containing nanocrystalline particles. Z. Metallkd. 90, 908 (1999).Google Scholar
44Eckert, J., Seidel, M., Kübler, A., Klement, U., and Schultz, L.: Oxide dispersion strengthened mechanically alloyed amorphous Zr–Al–Cu–Ni composites. Scripta Mater. 38, 595 (1998).CrossRefGoogle Scholar
45Eckert, J., Kübler, A., and Schultz, L.: Mechanically alloyed Zr55Al10Cu30Ni5 metallic glass composites containing nanocrystalline W particles. J. Appl. Phys. 85, 7112 (1999).CrossRefGoogle Scholar
46Eckert, J.: Mechanical behavior of nanocrystalline metals, in Nanostructured Materials: Processing, Properties and Applications, edited by Koch, C.C. (William Andrews Publishing, Norwich, NY, 2002), p. 423.Google Scholar
47Choi-Yim, H., Conner, R.D., Szuecs, F., and Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 (2002).CrossRefGoogle Scholar
48Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Syn-thesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
49Conner, R.D., Choi-Yim, H., and Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 (1999).CrossRefGoogle Scholar
50Dandliker, R.B., Conner, R.D., and Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 2896 (1998).CrossRefGoogle Scholar
51Kim, C.P., Busch, R., Masuhr, A., Choi-Yim, H., and Johnson, W.L.: Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Appl. Phys. Lett. 79, 1456 (2001).CrossRefGoogle Scholar
52Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75 Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
53Choi-Yim, H. and Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).CrossRefGoogle Scholar
54Bian, Z., Wang, R.J., Wang, W.H., Zhang, T., and Inoue, A.: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties. Adv. Func. Mater. 14, 55 (2004).CrossRefGoogle Scholar
55Inoue, A., Kimura, H., Sasamori, K., and Masumoto, T.: High mechanical strength of Al-(V,Cr,Mn)-(Fe,Co,Ni) quasicrystalline alloys prepared by rapid solidification. Mater. Trans., JIM 37, 1287 (1996).CrossRefGoogle Scholar
56Inoue, A. and Kimura, H.M.: Development of high-strength aluminum-based alloys by synthesis of new multicomponent quasicrystals, in Quasicrystals, edited by Dubois, J.M., Thiel, P.A., Tsai, A.P. and Urban, K. (Mater. Res. Soc. Symp. Proc. 553, Warrendale, PA, 1999), p. 495.Google Scholar
57Kimura, H.M., Inoue, A., Sasamori, K., and Masumoto, T.: Microstructure of rapidly solidified Al–V–Ce–M (M = Fe, Co, or Ni) high-strength alloys containing high-volume fraction of fine icosahedral precipitation. Mater. Trans., JIM 36, 1004 (1995).CrossRefGoogle Scholar
58Kühn, U., Eckert, J., Mattern, N., and Schultz, L.: As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Appl. Phys. Lett. 77, 3176 (2000).CrossRefGoogle Scholar
59Guo, F.Q., Wang, H.J., Poon, S.J., and Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 (2005).CrossRefGoogle Scholar
60Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M.: Crystallization behavior and phase formation in Zr–Al–Cu–Ni metallic glass containing oxygen. Mater. Trans. 39, 623 (1998).CrossRefGoogle Scholar
61Gebert, A., Eckert, J., and Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).CrossRefGoogle Scholar
62Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., and Matsushita, M.: Ductile quasicrystalline alloys. Appl. Phys. Lett. 76, 967 (2000).CrossRefGoogle Scholar
63Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).CrossRefGoogle Scholar
64Hajlaoui, K., Yavari, A.R., Das, J., and Vaughan, G.: Ductilization of BMGs by optimization of nanoparticale dispersion. J. Alloys Compd. (in press).Google Scholar
65Saida, J., Kato, H., Inoue, A., and Ohnurna, M.: Novel nanostructure and deformation behavior in rapidly quenched Cu–(Zr or Hf)–Ti alloys. Adv. Eng. Mater. 7, 39 (2005).CrossRefGoogle Scholar
66Kasai, M., Saida, J., Matsushita, M., Osuna, T., Matsubara, E., and Inoue, A.: Structure and crystallization of rapidly quenched Cu–(Zr or Hf)–Ti alloys containing nanocrystalline particles. J. Phys. Condens. Matter 14, 13867 (2002).CrossRefGoogle Scholar
67Calin, M., Eckert, J., and Schultz, L.: Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 (2003).CrossRefGoogle Scholar
68Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T., and Inoue, A.: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 (2003).CrossRefGoogle Scholar
69He, G., Löser, W., Eckert, J., and Schultz, L.: Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure. J. Mater. Res. 17, 3015 (2002).CrossRefGoogle Scholar
70Bian, Z., Ahmad, J., Zhang, W., and Inoue, A.: In situ formed (Cu0.6Zr0.25Ti0.15)93Nb7 bulk metallic glass composites. Mater. Trans., JIM 45, 2346 (2004).CrossRefGoogle Scholar
71Bian, Z., Kato, H., Qin, C.L., Zhang, W., and Inoue, A.: Cu– Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).CrossRefGoogle Scholar
72Eckert, J., Kühn, U., Das, J., Scudino, S., and Radtke, N.: Nanostructured composite materials with improved deformation behavior. Adv. Eng. Mater. 7, 587 (2005).CrossRefGoogle Scholar
73Eckert, J., Das, J., and Kim, K.B.: Nanostructured Composites: Ti-base alloys, Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, NY, 2006) .Google Scholar
74He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
75He, G., Eckert, J., and Löser, W.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).CrossRefGoogle Scholar
76He, G., Eckert, J., Löser, W., and Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004).CrossRefGoogle Scholar
77Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).CrossRefGoogle Scholar
78Das, J., Güth, A., Klauss, H-J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scripta Mater. 49, 1189 (2003).CrossRefGoogle Scholar
79Scudino, S., Das, J., Stoica, M., Kim, K.B., Kusy, M., and Eckert, J.: High strength hexagonal structured dendritic phase reinforced Zr–Ti–Ni bulk alloy with enhanced ductility. Appl. Phys. Lett. 88, 201920 (2006).CrossRefGoogle Scholar
80Choi-Yim, H., Conner, R.D., and Johnson, W.L.: In situ composite formation in the Ni–(Cu)–Ti–Zr–Si system. Scripta Mater. 53, 1467 (2005).CrossRefGoogle Scholar
81Kim, K.B., Yi, S., Choi-Yim, H., Das, J., Johnson, W.L., and Eckert, J.: Interfacial instability-driven amorphization/nanocrystallization in a bulk Ni45Cu5Ti33Zr16Si1 alloy during solidification. Phys. Rev. B 72, 092102 (2005).CrossRefGoogle Scholar
82Das, J., Roy, S.K., Löser, W., Eckert, J., and Schultz, L.: Novel in situ nanostructure-dendrite composites in Zr-base multicomponent alloy system. Mater. Manuf. Proc. 19, 423 (2004).CrossRefGoogle Scholar
83Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
84Lee, J.C., Kim, Y.C., Ahn, J.P., and Kim, H.S.: Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 53, 129 (2005).CrossRefGoogle Scholar
85Chou, C.P.P. and Turnbull, D.: Transformation behavior of Pd–Au–Si metallic glasses. J. Non-Cryst. Solids 17, 169 (1975).CrossRefGoogle Scholar
86Chen, H.S.: Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based glasses. Mater. Sci. Eng. 23, 151 (1976).CrossRefGoogle Scholar
87Busch, R., Schneider, S., Peker, A., and Johnson, W.L.: Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
88Liu, W., Johnson, W.L., Schneider, S., Geyer, U., and Thiyagarajan, P.: Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy. Phys. Rev. B 59, 11755 (1999).CrossRefGoogle Scholar
89Miller, M.K., Larson, D.J., Schwarz, R.B., and He, Y.: Decomposition in Pd40Ni40P20 metallic glass. Mater. Sci. Eng., A 250, 141 (1998).CrossRefGoogle Scholar
90Yao, K.F., Ruan, F., Yang, Y.Q., and Chen, N.: Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 (2006).CrossRefGoogle Scholar
91Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., and Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phy. Lett. 88, 051911 (2006).CrossRefGoogle Scholar
92Miller, M.K., Glade, S.C., and Johnson, W.L.: Phase separation in Cu47Ti33Zr11Ni8Si1 surface and interface analysis. Surf. Interface Anal. 36, 598 (2004).CrossRefGoogle Scholar
93Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 (2005).CrossRefGoogle Scholar
94Park, E.S. and Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).CrossRefGoogle Scholar
95Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A., and Bhattacharyya, S.: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 (2006).CrossRefGoogle Scholar
96Mattern, N., Kuhn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H., and Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 (2005).CrossRefGoogle Scholar
97Choi-Yim, H., Xu, D.H., Lind, M.L., Löffler, J.F., and Johnson, W.L.: Structure and mechanical properties of bulk glass-forming Ni–Nb–Sn alloys. Scripta Mater. 54, 187 (2006).CrossRefGoogle Scholar
98Lohwongwatana, B., Schroers, J., and Johnson, W.L.: Strain rate induced crystallization in bulk metallic glass-forming liquid. Phys. Rev. Lett. 96, 075503 (2006).CrossRefGoogle ScholarPubMed
99Inoue, A.: Bulk glassy and nonequilibrium crystalline alloys by stabilization of suprecooled liquid: Fabrication, functional properties and application. Proc. Jpn. Acad. 81B, 156 (2005).CrossRefGoogle Scholar
100Li, H., Subhash, G., Kecskes, L.J., and Dowding, R.J.: Mechanical behavior of tungsten preform reinforced bulk metallic glass composites. Mater. Sci. Eng., A 403, 134 (2005).CrossRefGoogle Scholar
101Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S., and Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles. Scripta Mater. 52, 669 (2005).CrossRefGoogle Scholar
102Xu, Y.K., Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).CrossRefGoogle Scholar
103Lim, H.K., Park, E.S., Park, J.S., Kim, W.T., and Kim, D.H.: Fabrication and mechanical properties of WC particulate reinforced Cu47Ti33Zr11Ni6Sn2Si1 bulk metallic glass matrix composites. J. Mater. Sci. 40, 6127 (2005).CrossRefGoogle Scholar
104Kato, H., Yubuta, K., Louzguine, D.V., Inoue, A., and Kim, H.S.: Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing μm–ZrC particle reinforcements. Scripta Mater. 51, 577 (2004).CrossRefGoogle Scholar
105Jang, J.S.C., Chang, L.J., Young, J.H., Huang, J.C., and Tsao, C.Y.A.: Synthesis and characterization of the Mg-based amorphous/nano ZrO2 composite alloy. Intermetallics 14, 945 (2006).CrossRefGoogle Scholar
106Choi-Yim, H., Schroers, J., and Johnson, W.L.: Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 80, 1906 (2002).CrossRefGoogle Scholar
107Fu, H.M., Wang, H., Zhang, H.F., and Hu, Z.Q.: In situ TiB-reinforced Cu-based bulk metallic glass composites. Scripta Mater. 54, 1961 (2006).CrossRefGoogle Scholar
108Inoue, A., Zhang, T., Ishihara, S., Saida, J., and Matsushita, M.: Preparation and mechanical properties of nanoquasicrystalline base bulk alloys. Scripta Mater. 44, 1615 (2001).CrossRefGoogle Scholar
109Xing, L.Q., Bertrand, C., Dallas, J.P., and Cornet, M.: Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Nb8Ti5 alloy and its mechanical properties. Mater. Sci. Eng., A 241, 216 (1998).CrossRefGoogle Scholar
110Bian, Z., Chen, G.L., He, G., and Hui, X.D.: Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng., A 316, 135 (2001).CrossRefGoogle Scholar
111Ott, R.T., Fan, C., Li, J., and Hufnagel, T.C.: Structure and properties of Zr–Ta–Cu–Ni–Al bulk metallic glasses and metallic glass matrix composites. J. Non-Cryst. Solids. 317, 158 (2003).CrossRefGoogle Scholar
112Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 (2001).CrossRefGoogle Scholar
113Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., and Mukherjee, A.K.: Shear band formation and ductility in bulk metallic glass. Philos. Mag. 85, 2671 (2005).CrossRefGoogle Scholar
114Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
115Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
116Wesseling, P., Nieh, T.G., Wang, W.H., and Lewandowski, J.J.: Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Mater. 51, 151 (2004).CrossRefGoogle Scholar
117Liu, F.X., Liaw, P.K., Wang, G.Y., Chiang, C.L., Smith, D.A., Rack, P.D., Chu, J.P., and Buchanan, R.A.: Specimen-geometry effects on mechanical behavior of metallic glasses. Intermetallics 14, 1014 (2006).CrossRefGoogle Scholar
118Kühn, U., Eckert, J., Mattern, N., and Schultz, L.: Microstructure and mechanical properties of slowly cooled Zr–Nb–Cu–Ni–Al composites with ductile bcc phase. Mater. Sci. Eng., A 375, 322 (2004).CrossRefGoogle Scholar
119Cheng, S., Spencer, J.A., and Milligan, W.W.: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 (2003).CrossRefGoogle Scholar
120Donovan, P.E.: A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall. 37, 445 (1989).CrossRefGoogle Scholar
121Dieter, G.E.: Mechanical Metallurgy, 3rd ed. (McGraw-Hill Book Company, London, UK, 1988), p. 330.Google Scholar
122Lund, A.C. and Schuh, C.A.: Yield surface of a simulated metallic glass. Acta Mater. 51, 5399 (2003).CrossRefGoogle Scholar
123Zhang, Z.F. and Eckert, J.: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 (2005).CrossRefGoogle ScholarPubMed
124Eckert, J., Reger-Leonhard, A., Weiss, B., Heilmaier, M., and Schultz, L.: Bulk nanostructured multicomponent alloys. Adv. Eng. Mater. 3, 41 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
125Gloriant, T.: Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials. J. Non-Cryst. Solids 316, 96 (2003).CrossRefGoogle Scholar
126Greer, A.L.: Partially or fully devitrified alloys for mechanical properties. Mater. Sci. Eng., A 304, 68 (2001).CrossRefGoogle Scholar
127Zhong, Z.C., Jiang, X.Y., and Greer, A.L.: Microstructure and hardening of Al-based nanophase composites. Mater. Sci. Eng., A 226, 531 (1997).CrossRefGoogle Scholar
128Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
129Nagendra, N., Ramamurty, U., Goh, T.T., and Li, Y.: Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 (2000).CrossRefGoogle Scholar
130Lewandowski, J.J.: Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Mater. Trans., JIM 42, 633 (2001).CrossRefGoogle Scholar
131Zhang, Z.F., Eckert, J., and Schultz, L.: Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 91, 045505 (2003).CrossRefGoogle ScholarPubMed
132He, G., Zhang, Z.F., Löser, W., Eckert, J., and Schultz, L.: Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta Mater. 51, 2383 (2003).CrossRefGoogle Scholar
133Sun, Y.F., Guan, S.K., Wei, B.C., Wang, Y.R., and Shek, C.H.: Brittleness of Zr-based metallic glass matrix composites containing ductile dendritic phase. Mater. Sci. Eng., A 406, 57 (2005).CrossRefGoogle Scholar
134Kusy, M., Kühn, U., Concustell, A., Gebert, A., Das, J., Eckert, J., Schultz, L., and Baro, M.D.: Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. Intermetallics 14, 982 (2006).CrossRefGoogle Scholar
135Zhang, Z.F., Eckert, J., and Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003).CrossRefGoogle Scholar
136Argon, A.S. and Salama, M.: The mechanism of fracture in glassy materials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
137He, G., Löser, W., Eckert, J., and Schultz, L.: Phase transformation and mechanical properties of Zr-base bulk glass-forming alloys. Mater. Sci. Eng., A 352, 179 (2003).CrossRefGoogle Scholar
138Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation of amorphous solids. Phys. Rev. E 57, 7192 (1998).CrossRefGoogle Scholar
139Argon, A.S.: Mechanism of inelastic deformation in metallic glass. J. Phys. Chem. Solids 43, 945 (1982).CrossRefGoogle Scholar
140Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
141Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J.F., Vaughan, G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, A.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Mater. 54, 1829 (2006).CrossRefGoogle Scholar
142Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
143Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).CrossRefGoogle Scholar
144Kim, K.B., Das, J., Baier, F., and Eckert, J.: Propagation of shear bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during deformation. Appl. Phys. Lett. 86, 171909 (2005).CrossRefGoogle Scholar
145Kim, K.B., Das, J., Baier, F., and Eckert, J.: Lattice distortion/disordering and local amorphization in the dendrites of a Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during intersection of shear bands. Appl. Phys. Lett. 86, 201909 (2005).CrossRefGoogle Scholar
146Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
147Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
148Saida, J., Setyawan, A.D.H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).CrossRefGoogle Scholar
149Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Metals Mater. Int. 10, 575 (2004).CrossRefGoogle Scholar
150Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
151Kim, K.B., Das, J., Venkataraman, S., Yi, S., and Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 (2006).CrossRefGoogle Scholar
152Das, J., Pauly, S., Duhamel, C., Wei, B.C., and Eckert, J.: Microstructure and mechanical properties of Cu47.5Zr47.5Al5. J. Mater. Res. 22(2) 326, (2007).CrossRefGoogle Scholar
153Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., and Eckert, J.: Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans., JIM 47, 2606 (2006).CrossRefGoogle Scholar
154Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., and Shek, C.H.: Plasticity improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).CrossRefGoogle Scholar
155Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q.: Processing of bulk metallic glass with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54, 1145 (2006).CrossRefGoogle Scholar
156Jia, P., Guo, H., Li, Y., Xu, J., and Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Mater. 54, 2165 (2006).CrossRefGoogle Scholar
157Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).CrossRefGoogle ScholarPubMed
158Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).CrossRefGoogle ScholarPubMed
159Demkowicz, M.J. and Argon, A.S.: High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004).CrossRefGoogle Scholar
160Demkowicz, M.J. and Argon, A.S.: Autocatalytic avalanches of unit inelastic shearing events are the mechanism of plastic deformation in amorphous silicon. Phys. Rev. B 72, 245206 (2005).CrossRefGoogle Scholar
161Li, Q.K. and Li, M.: Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metal. Intermetallics 14, 1005 (2006).CrossRefGoogle Scholar