Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:17:01.973Z Has data issue: false hasContentIssue false

Mechanical properties of GaAs crystals

Published online by Cambridge University Press:  31 January 2011

Ichiro Yonenaga
Affiliation:
The Research Institute for Iron, Steel, and Other Metals, Tohoku University, Sendai 980, Japan
Utako Onose
Affiliation:
The Research Institute for Iron, Steel, and Other Metals, Tohoku University, Sendai 980, Japan
Koji Sumino
Affiliation:
The Research Institute for Iron, Steel, and Other Metals, Tohoku University, Sendai 980, Japan
Get access

Abstract

Mechanical properties of GaAs crystals grown by the liquid encapsulated Czochralski technique and the boat technique are investigated by means of compression tests. Stressstrain characteristics of a GaAs crystal in the temperature range 400°–500°C are very similar to those of a Si crystal in the temperature range 800°–900°C. This seems to reflect the fact that the dislocation mobility in a GaAs crystal in the former temperature range is comparable to that in a Si crystal in the latter temperature range. Dislocations in GaAs crystals are found to be easily immobilized at an intermediate temperature due to gettering of impurities and/or impurity-point defect complexes. In comparison to a Si crystal, the surface of a GaAs crystal seems to involve irregularities that act easily as effective generation centers for dislocations. Thus the magnitude of the yield stress of an aged GaAs crystal is controlled by the surface condition and is not influenced by the density of dislocations involved in the crystal. The socalled steady state of deformation is realized in a GaAs crystal in the deformation stage after the lower yield point as in Si and Ge crystals. Dislocation distributions in a deformed GaAs crystal observed by transmission electron microscopy is very similar to those in deformed Si and Ge crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Alexander, H. and Haasen, P., Solid State Phys. 22, 28 (1968).Google Scholar
2Kojima, K. and Sumino, K., Cryst. Lattice Defects 2, 147 (1971).Google Scholar
3Sumino, K. and Kojima, K., Cryst. Lattice Defects 2, 159 (1971).Google Scholar
4Sumino, K., Kodaka, S., and Kojima, K., Mater. Sci. Eng. 13, 263 (1974).Google Scholar
5Sumino, K., Mater. Sci. Eng. 13, 269 (1974).Google Scholar
6Yonenaga, I. and Sumino, K., Phys. Status Solidi A 50, 685 (1978).CrossRefGoogle Scholar
7Suezawa, M., Sumino, K., and Yonenaga, I., Phys. Status Solidi A 51, 217 (1979).CrossRefGoogle Scholar
8Sazhin, N. P.Mil'vidskii, M. G., Osvenskii, V. B. and Sto-lyarov, O. G., Sov. Phys.-Solid State 8, 1223 (1966).Google Scholar
9Laister, D. and Jenkins, G. M.J. Mater. Sci. 8, 1218 (1973).CrossRefGoogle Scholar
10Swaminathan, V. and Copley, S. M.J. Am. Ceram. Soc. 58, 482 (1975).CrossRefGoogle Scholar
11Hobgood, H. M.McGuigan, S., Spitnagel, J. A. and Thomas, R. N.Appl. Phys. Lett. 48, 1654 (1986).CrossRefGoogle Scholar
12Erofeeva, S. A and Ossipyan, Yu. A., Sov. Phys. Solid State 15, 538 (1973).Google Scholar
13Osvenskii, V. B.Knolodnyi, L. P. and Mil'vidskii, M. G., Sov. Phys.-Solid State 15, 661 (1973).Google Scholar
14Choi, S. K.Mihara, M., and Ninomiya, T., Jpn. J. Appl. Phys. 16, 737 (1977).CrossRefGoogle Scholar
15Steinhardt, H. and Haasen, P., Phys. Status Solidi A 49, 93 (1978).CrossRefGoogle Scholar
16Yonenaga, I., Sumino, K., and Yamada, K., Appl. Phys. Lett. 48, 327 (1986).CrossRefGoogle Scholar
17Richards, J. L. and Crocker, A. J.J. Appl. Phys. 31, 611 (1960).Google Scholar
18Abrahams, M. S.J. Appl. Phys. 35, 3626 (1964).CrossRefGoogle Scholar
19Cottrell, A. H.Dislocations and Plastic Flow in Crystals (Clarendon, Oxford, 1953), p. 56.Google Scholar
20Sumino, K., Defects in Semiconductors II, edited by Mahajan, S. and Corbett, J. W. (North-Holland, Amsterdam, 1983), Vol. 14, p. 407.Google Scholar
21Kocks, U. F.Argon, A. S. and Ashby, M. F.Thermodynamics and Kinetics of Slip/Progress in Materials Science, edited by Chalmers, B., Christian, J. W. and Massalski, T. B. (Pergamon, New York, 1975), Vol. 19, p. 173.Google Scholar
22Seeger, A., Kristallplastizitdt/Handbuch der Physik, edited by Fliigge, S. (Springer, Berlin, 1958), Vol. VII-2, p. 112.Google Scholar
23Johnston, W. G.J. Appl. Phys. 33, 2716 (1962).Google Scholar
24Yonenaga, I., Takebe, M., and Sumino, K., in the Proceedings of the International Symposium on Structure and Properties of Dislocations in Semiconductors, Moscow, 1986 (in press).Google Scholar
25Sumino, K. and Yonenaga, I., Jpn. J. Appl. Phys. 20, L685 (1981).CrossRefGoogle Scholar
26Iida, S. and Ito, K., J. Electrochem. Soc. 118, 786 (1971).CrossRefGoogle Scholar
27Alexander, H., Phys. Status Solidi 26, 725 (1968).CrossRefGoogle Scholar
28Alexander, H., Phys. Status Solidi 27, 391 (1968).CrossRefGoogle Scholar
29Yonenaga, I. and Sumino, K., in Ref. 24.Google Scholar
30Imai, M. and Sumino, K., Philos. Mag. A 47, 599 (1983).CrossRefGoogle Scholar
31Schaumburg, H., Philos. Mag. 25, 1429 (1972).CrossRefGoogle Scholar
32Sekiguchi, T. and Sumino, K. in the Proceedings of the 11th Congress on Electron Microscopy, Kyoto (The Japanese Society of Electron Microscopy, Tokyo, 1986), p. 407.Google Scholar
33Cullis, A. G.Augustus, P. D. and Stirland, D. J.J. Appl. Phys. 51, 2556 (1980).CrossRefGoogle Scholar