Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:44:28.005Z Has data issue: false hasContentIssue false

Mechanical properties of ion-implanted amorphous silicon

Published online by Cambridge University Press:  03 March 2011

D.M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1056
J.A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1056
S.M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1056
Get access

Abstract

We used nanoindentation coupled with finite element modeling to determine the mechanical properties of amorphous Si layers formed by self-ion implantation of crystalline Si at approximately 100 K. When the effects of the harder substrate on the response of the layers to indentation were accounted for, the amorphous phase was found to have a Young’s modulus of 136 ± 9 GPa and a hardness of 10.9 ± 0.9 GPa, which were 19% and 10% lower than the corresponding values for crystalline Si. The hardness agrees well with the pressure known to induce a phase transition in amorphous Si to the denser β–Sn-type structure of Si. This transition controls the yielding of amorphous Si under compressive stress during indentation, just as it does in crystalline Si. After annealing 1 h at 500 °C to relax the amorphous structure, the corresponding values increase slightly to 146 ± 9 GPa and 11.6 ± 1.0 GPa. Because hardness and elastic modulus are only moderately reduced with respect to crystalline Si, amorphous Si may be a useful alternative material for components in Si-based microelectromechanical systems if other improved properties are needed, such as increased fracture toughness.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Follstaedt, D.M., Knapp, J.A. and Myers, S.M., Metall. Mat. Trans. A. 34A 935 (2003).CrossRefGoogle Scholar
2.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19 845 (1984).CrossRefGoogle Scholar
3.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19 3524 (1984).CrossRefGoogle Scholar
4.McHargue, C.J., Sklad, P.S., White, C.W., McCallum, J.C., Perez, A. and Marest, G., J. Mater. Res. 6 2160 (1991).CrossRefGoogle Scholar
5.Myers, S.M., Knapp, J.A., Follstaedt, D.M. and Dugger, M.T., J. Appl. Phys. 83 1256 (1998).CrossRefGoogle Scholar
6.Ziegler, J.F.Biersack, J.P. and Littmark, U.The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
7.El-Ghor, M.K., Holland, O.W., White, C.W. and Pennycook, S.J., J. Mater. Res. 5 352 (1990).CrossRefGoogle Scholar
8.Campisano, S.U.Coffa, S.Raineri, V.Priolo, F. and Rimini, E., Nucl. Instrum. Methods Phys. Res. B 80,81, 514 (1993).CrossRefGoogle Scholar
9.Ohdomori, I., Kakumu, M., Sugahara, H., Mori, M., Saito, T., Yonehara, T., Hajimoto, Y.. J. Appl. Phys. 52 6617 (1981).CrossRefGoogle Scholar
10.Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F. and Fuoss, P., Phys. Rev. B. 44 302 (1991).CrossRefGoogle Scholar
11.Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S. and Saris, F.W., Appl. Phys. Lett. 67 226 (1995).CrossRefGoogle Scholar
12.Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C. and Friedmann, T.A., J. Appl. Phys. 85 1460 (1999).CrossRefGoogle Scholar
13.Follstaedt, D.M., Knapp, J.A., Myers, S.M. and Petersen, G.A. in Ion Beam Synthesis and Processing of Advanced Materials, edited by Moss, S.C., Heinig, K.H., and Poker, D.B. (Mater. Res. Soc. Symp. Proc. 647 Warrendale, Pa, 2001) pp. 09.3.1–13.Google Scholar
14.Knapp, J.A., Follstaedt, D.M., Petersen, G.A. and Myers, S.M. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649 Warrendale, Pa, 2001), pp. Q1.2.1–6.Google Scholar
15.Williams, J.S., Field, J.S. and Swain, M.V. in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E., Jr., and P. Børgesen (Mater. Res. Soc. Symp. Proc. 308 Pittsburgh, PA, 1993), p. 571.Google Scholar
16.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A. and Swain, M.V., J. Mater. Res. 14 2338 (1999).CrossRefGoogle Scholar
17.Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, C.F. and Hockey, B.J., Phys. Rev. Lett. 60 2156 (1988).CrossRefGoogle Scholar
18.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
19.Pharr, G.M. in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239 Pittsburgh, PA, 1992), p. 301.Google Scholar
20.Bradby, J.E.Williams, J.S.Wong-Leung, J.Swain, M.V. and Munroe, P., J. Mater. Res. 16, Warrendale, PA, 2001), p. 1500.Google Scholar
21.Mann, A.B.Heerden, D. van, Pethica, J.B.Bowes, P. and Weihs, T.P.Philos. Mag. A. 82 1921 (2002).CrossRefGoogle Scholar
22.Tsuji, K.Katayama, Y.Koyama, N. and Imai, M.Jpn. J. Appl. Phys. 32 (suppl 32-1)185 (1993).CrossRefGoogle Scholar
23.Imai, M., Mitamura, T., Yaoita, K. and Tsuji, K., High Pressure Res. 15 167 (1996).CrossRefGoogle Scholar
24.Shimomura, O.Minomura, S.Sakai, N.Asaumi, K.Tamura, K.Fukushima, J. and Endo, H., Philos. Mag. 29 547 (1974).CrossRefGoogle Scholar
25.Minomura, S., Semiconductors and Semimetals. 21A 273 (1984).CrossRefGoogle Scholar
26.Ager, J., Brown, I., Monteiro, O., Knapp, J.A., Follstaedt, D.M., Nastasi, M., Walter, K.C. and Maggiore, C.J. in Materials Modification and Synthesis by Ion Beam Processing, edited by Alexander, D.E., Cheung, N.W., Park, B., and Skorupa, W. (Mater. Res. Soc. Symp. Proc. 438 Pittsburgh, PA, 1997), p. 581.Google Scholar
27.Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Tallant, D.R., Follstaedt, D.M., Medlin, D.L. and Mirkarimi, P.B., Appl. Phys. Lett. 71 3820 (1997).CrossRefGoogle Scholar
28.Zachariasen, W.H., J. Am. Chem. Soc. 54 3841 (1932).CrossRefGoogle Scholar
29.Gibson, J.M., Treacy, M.M.J. and Keblinski, P.J., J. Non-Cryst. Solids. 231 99 (1998).Google Scholar
30.Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J.M. and Abelson, J.R., Phys. Rev. Lett. 86 5514 (2001).CrossRefGoogle Scholar
31.Gibson, J.M., Cheng, J-Y., Voyles, P., Treacy, M.M.J. and Jacobson, D.C. in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540 Warrendale, PA, 1999), p. 27.Google Scholar
32.Cheng, J-Y., Gibson, J.M., Voyles, P.M., Treacy, M.M.J. and Jacobson, D.C. in Advances in Materials Problelm Solving with the Electron Microscope, edited by Bentley, J., Allen, C., Dahmen, U., and Petrov, I. (Mater. Res. Soc. Symp. Proc. 589 Warrendale, PA, 2001), p. 247.Google Scholar
33.Beanland, D.G. in Ion Implantation and Beam Processing, edited by Poate, J.M. and Williams, J.S. (Academic Press, New York, 1984) p. 273.Google Scholar
34. The lattice displacement profile was calculated according to the methods discussed in Ref. 6, using the Stopping and Range of Ions in Matter code, SRIM-2003, provided by J.F. Ziegler, 1201 Dixona Drive, Edgewood, MD 21037; private communication, (2003).Google Scholar
35.Volkert, C.A., J. Appl. Phys. 74 7107 (1993).CrossRefGoogle Scholar
36.Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C., Spaepen, F.. Appl. Phys. Lett. 64 437 (1994).CrossRefGoogle Scholar
37.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
38.Hirth, J.P. and Lothe, J.Theory of Dislocations (Krieger, Malabar, FL, 1992), p. 836.Google Scholar
39.Handbook of Optics, 2nd ed., edited by Bass, M.Van Stryland, E.W., Williams, D.R.Wolfe, W.L. (McGraw-Hill, New York, 1995), Vol. II, p. 33.49.Google Scholar
40.Pharr, G.M., Oliver, W.C. and Clarke, D.R., J. Electron. Mater. 19 881 (1990).CrossRefGoogle Scholar
41.Weppelmann, E.R., Field, J.S. and Swain, M.V., J. Mater. Res. 8 830 (1993).CrossRefGoogle Scholar
42.Gogotsi, Y.G., Kailer, A. and Nickel, K.G., Mater. Res. Innovat. 1 3 (1997).CrossRefGoogle Scholar
43.Hu, J.Z., Merkle, L.D., Menoni, C.S. and Spain, I.L., Phys. Rev. B. 34 4679 (1986).CrossRefGoogle Scholar
44.Pharr, G.M., Oliver, W.C. and Harding, D.S., J. Mater. Res. 6 1129 (1991).CrossRefGoogle Scholar
45.Tan, S.I., Berry, B. S., Crowder, B.L.. Appl. Phys. Lett. 20 88 (1971).CrossRefGoogle Scholar
46.Bhadra, R.Pearson, J.Okamoto, P.Rehn, L. and Grimsditch, M.Phys. Rev. B 38 12656 (1988).CrossRefGoogle Scholar
47.Szabadi, M., Hess, P., Kellock, A.J., Coufal, H. and Baglin, J.E.E., Phys. Rev. B. 58 8941 (1998).CrossRefGoogle Scholar
48.Burnett, P.J. and Briggs, G.A.D., J. Mater. Sci. 21 1826 (1986).CrossRefGoogle Scholar
49.Zuk, J., Kiefte, H. and Clouter, M.J., J. Appl. Phys. 73 4951 (1993).CrossRefGoogle Scholar
50.Khayyat, M.M., Banini, G.K., Hasko, D.G. and Chaudhri, M.M., J. Phys. D: Appl. Phys. 36 1300 (2003).CrossRefGoogle Scholar
51.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 77 3749 (2000).CrossRefGoogle Scholar
52.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
53.Sullivan, J.P., Friedmann, T.A. and Hjort, K., MRS Bull. 26 309 (2001).CrossRefGoogle Scholar
54.Friedmann, T.A. (private communication).Google Scholar
55.McHargue, C.J., Defect and Diffusion Forum 57–58 359 (1998).Google Scholar
56.De Sandre, G., Colombo, L. and Bottani, C., Phys. Rev. B 54 11857 (1996).CrossRefGoogle Scholar
57.Sandre, G. DeColombo, L. and Bottani, C., Mater. Sci. Eng. B 37 189 (1996).CrossRefGoogle Scholar
58. MRS Bull 26 4 (2001).Google Scholar
59.Swadener, J.G. and Nastasi, M.Nucl. Instrum. Methods Phys. Res. B 206 937 (2003).CrossRefGoogle Scholar