Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:47:42.742Z Has data issue: false hasContentIssue false

Mechanical properties of nanocrystalline copper produced by solution-phase synthesis

Published online by Cambridge University Press:  31 January 2011

R. Suryanarayanan
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Claire A. Frey
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Shankar M. L. Sastry
Affiliation:
Materials Science and Engineering Program, Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130–4899
Benjamin E. Waller
Affiliation:
Department of Chemistry, Washington University, St. Louis, Missouri 63130–4899
Susan E. Bates
Affiliation:
Department of Chemistry, Washington University, St. Louis, Missouri 63130–4899
William E. Buhro
Affiliation:
Department of Chemistry, Washington University, St. Louis, Missouri 63130–4899
Get access

Abstract

Nanocrystalline copper powder was produced by a NaBH4 reduction of CuCl in a simple solution phase room temperature reaction. Uniaxial hot pressing in a closed tungsten die was used to compact powder into dense specimens. Samples were analyzed by x-ray diffraction, precision densitometry, electron microscopy, energy dispersive x-ray analysis, and selected area diffraction. Mechanical properties of the consolidated samples were determined by microhardness measurements, three-point bending of rectangular specimens, and compression tests. Yield strength measured for nanocrystalline Cu in the present work was over two times that reported in literature for Cu with comparable grain size and over five times that of conventional Cu. Restricted grain growth observed in the hot-pressed samples and improved mechanical properties are attributed to the presence of boron. A unique method of obtaining homogeneous in situ nanosized reinforcements to strengthen the grain boundaries in nanocrystalline materials is identified.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Birringer, R. and Gleiter, H., in Advances in Material Science, Encyclopaedia of Mater. Sci. Engg., edited by Cahn, R. W. (Perg-amon Press, Oxford, 1988), p. 339.Google Scholar
2.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
3.Suryanarayana, C. and Froes, F. H., Metall. Trans. A 23A, 1071 (1992).CrossRefGoogle Scholar
4.Herr, U., Jing, J., Birringer, R., Gonser, U., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).CrossRefGoogle Scholar
5.Siegel, R. W., Mater. Sci. Engg. B B19, 37 (1993).CrossRefGoogle Scholar
6.Karch, J., Birringer, R., and Gleiter, H., Nature (London) 330, 556 (1987).CrossRefGoogle Scholar
7.Averback, R. S., Hofler, H. J., and Tao, R., Mater. Sci. Engg. A A166, 167 (1993).Google Scholar
8.Hahn, H. and Averback, R. S., J. Appl. Phys. 67 (2), 1113 (1990).CrossRefGoogle Scholar
9.McMahon, G. and Erb, U., Microstructural Science 17, 447 (1989).Google Scholar
10.Cheung, C., Palumbo, G., and Erb, U., Scripta Metall. 31 (6), 735 (1994).CrossRefGoogle Scholar
11.Bonevich, J. E. and Marks, L. D., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 3.Google Scholar
12.Readey, M. J., Lee, R-R., Halloran, J. W., and Heuer, A. H., J. Am. Ceram. Soc. 73 (6), 1499 (1990).CrossRefGoogle Scholar
13.Mayo, M. J., Hague, D. C., and Chen, D-J., Mater. Sci. Engg. A A166, 145 (1993).CrossRefGoogle Scholar
14.Lee, H-Y., Riehemann, W., and Mordike, B. L., J. Euro. Ceram. Soc. 10, 245 (1992).CrossRefGoogle Scholar
15.Zhou, Y. C. and Rahaman, M. N., J. Mater. Res. 8, 1680 (1993).CrossRefGoogle Scholar
16.Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
17.Suryanarayanan, R., Frey, C. A., Sastry, S. M. L., Waller, B. E., and Buhro, W. E., J. Mater. Res. 44945711, (1996).Google Scholar
18.Shriver, D. F., The Manipulation of Air-Sensitive Compounds (John Wiley, New York, 1986).Google Scholar
19.Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski et al. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 350.Google Scholar
20.Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
21.Hansen, N. and Ralph, B., Acta Metall. 30, 411 (1982).CrossRefGoogle Scholar
22.Helle, A. S., Easterling, K. E., and Ashby, M. F., Acta Metall. 33, 2163 (1985).CrossRefGoogle Scholar
23.Suryanarayanan, R. and Sastry, S. M. L., unpublished research.Google Scholar
24.Shi, J. L., Gao, J. H., Lin, Z. X., and Yan, D. S., J. Mater. Sci. 28 (2), 342 (1993).CrossRefGoogle Scholar
25.Lange, F. F., J. Am. Ceram. Soc. 67 (2), 83 (1984).CrossRefGoogle Scholar
26.Alman, D. E., Shaw, K. G., Stollof, N. S., and Rajan, K., Mater. Sci. Engg. A A155, 85 (1992).CrossRefGoogle Scholar
27.Mayo, M. J. and Chen, D. J., in Nanostructured Materials: Synthesis, Properties, and Uses, edited by Edelstien, A. S. and Cammarata, R. C. (Institute of Physics, Bristol, U.K., 1994).Google Scholar
28.Jain, M. and Christman, T., Acta Metall. 42 (6), 1901 (1994).CrossRefGoogle Scholar
29.German, R. M., Powder Metallurgy Science (MPIF, New Jersey, 1985), p. 121.Google Scholar
30.Novikov, V. I., Ganelin, V. Y., Trusov, L. I., Lapovok, V. N., Shutov, I.A., Yakovlev, E. N., Khvostantsev, L. G., Galieshvili, T. P., and Kvataya, N. D., Phys. Metals (U.S.S.R.) 8, 111 (1986).Google Scholar
31.Mutschele, T. and Kirchheim, R., Scripta Metall. 21, 135 (1987).CrossRefGoogle Scholar
32.Hahn, H., Hofler, H. J., and Averback, R. S., Proceedings of DIMETA-88: Int. Conf. on Diffusion in Metals and Alloys, Balantonfured, Hungary (1988).Google Scholar
33.Higashi, I., Takahashi, Y., and Atoda, T., J. Less-Comm. Metals 37, 199 (1974).CrossRefGoogle Scholar
34.CRC Handbook of Chemistry and Physics, 75th ed., edited by D. R. Lide (CRC Press, Boca Raton, FL, 1994).Google Scholar
35.Gertsman, V. Y. and Birringer, R., Scripta Metall. 30, 577 (1994).CrossRefGoogle Scholar
36.Liu, C. T., White, C. L., and Horton, J.A., Acta Metall. 33, 1587 (1985).CrossRefGoogle Scholar
37.Miller, M. K. and Horton, J.A., J. de Phys. C7, 263 (1986).Google Scholar
38.Wang, W., Zhang, S., and He, X., Acta Metall. Mater. 43 (4), 1693 (1995).CrossRefGoogle Scholar
39.Aust, K. T., Hanneman, R. E., Niessen, P., and Westbrook, J. H., Acta Metall. 16, 291 (1968).CrossRefGoogle Scholar
40.Karlsson, L. and Norden, H., Acta Metall. 36, 35 (1988).CrossRefGoogle Scholar
41.Hofler, H. J., Averback, R. S., and Gleiter, H., Philos. Mag. Lett. 68 (2), 99 (1993).CrossRefGoogle Scholar
42.Rice, J. R., The Effect of Hydrogen on the Behavior of Metals (AIME, New York, 1976), p. 455.Google Scholar
43.Robertson, I. M., Lee, T. C., Subramanian, R., and Birnbaum, H. K., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Dahmen, U., and Briant, C. L. (Mater Res. Soc. Symp. Proc. 238, Pittsburgh, PA, 1992), p. 357.Google Scholar
44.Lee, T. C., Robertson, I. M., and Birnbaum, H. K., Acta Metall. 40 (10), 2569 (1992).CrossRefGoogle Scholar
45.Hondros, E. D. and Seah, M. P., Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (Elsevier, Amsterdam, 1983), p. 855.Google Scholar
46.Valiev, R. Z., Kozlov, E. V., Ivanov, Yu. F., Lian, J., Nazarov, A. A., and Baudelet, B., Acta Metall. 42 (7), 2467 (1994).CrossRefGoogle Scholar