Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T16:36:18.088Z Has data issue: false hasContentIssue false

Mechanism of improvement of TiN-coated tool life by nitrogen implantation

Published online by Cambridge University Press:  31 January 2011

S. J. Bull
Affiliation:
Department of Mechanical, Materials and Manufacturing Engineering, University of Newcastle, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
Yu. P. Sharkeev
Affiliation:
Russian Academy of Sciences, Institute for Strength Physics and Materials Science, Tomsk 634021, Russia
S. V. Fortuna
Affiliation:
Tomsk State University, Department of Architecture and Building, Tomsk 634003, Russia
I. A. Shulepov
Affiliation:
Nuclear Physics Institute, Tomsk Polytechnic University, Tomsk 634050, Russia
A. J. Perry
Affiliation:
A.I.M.S. Consulting, 9470, Buchs SG, Switzerland
Get access

Abstract

The life of TiN-coated tools can be improved by a post-coating ion implantation treatment, but the mechanism by which this occurs is still not clear. Nitrogen implantation of both physical-vapor-deposited TiN and CVD TiN leads to surface softening as the dose increases, which has been attributed to amorphization. In this study a combination of transmission electron microscopy and atomic force microscopy was used to characterize the microstructure of implanted TiN coatings on cemented carbide for comparison with mechanical property measurements (nanoindentation, residual stress, etc.), made on the same samples. Ion implantation leads to a slight reduction in the grain size of the TiN in the implanted zone, but there is no evidence for amorphization. Surface softening is observed for physical-vapor-deposited TiN, but this is probably due to a combination of changes in surface composition and the presence of a layer of bubbles generated by the very high implantation doses used.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fountzoulas, C.G., Gonzalez, A., Hirvonen, J.K., Sartwell, B.D., and Lancaster, F., Surf. Coat. Technol. 84, 574 (1996).CrossRefGoogle Scholar
2.Culbertson, R.J., Burns, F.C., Franzen, W., Lowder, L.J., Ricca, J.J., and Gonzales, A., Nucl. Instrum. Methods B56/57, 652 (1991).CrossRefGoogle Scholar
3.Braun, M., Nucl. Instrum. Methods B59/60, 914 (1991).CrossRefGoogle Scholar
4.Perry, A.J., Treglio, J.R., Bhat, D.G., Boppana, S.P., Kattamis, T.Z., Schlichting, K., Dearnaley, G., and Geist, D.E., Surf. Coat. Technol 68/69, 294 (1994).CrossRefGoogle Scholar
5.Manory, R.R., Liu, L.J., Sood, D.K., Shao, Z.M., Kylner, C., and Braun, M., Surf. Coat. Technol. 70, 1 (1994).CrossRefGoogle Scholar
6.Perry, A.J., Mater. Sci. Eng. A253, 310 (1998).CrossRefGoogle Scholar
7.Jang, T.S. and Lee, S.W., Mater. Chem. Phys. 54, 305 (1998).CrossRefGoogle Scholar
8.Kulkarni, A.V., Matc, N., Kanektar, S.M., Ogale, S.B., and Wagh, B.G., Surf. Coat. Technol. 54/55, 180 (1992).Google Scholar
9.Manory, R.R., Li, C.L., Fountzoulas, C., Demaree, J.D., Hirvonen, J.G., and Nowak, R., Mater. Sci. Eng. A253, 319 (1998).CrossRefGoogle Scholar
10.Jones, A.M., AEA Technology (private communication).Google Scholar
11.Thornton, J.A., Ann. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
12.Giest, D.E., Perry, A.J., Treglio, J.R., Valvoda, V., and Rafaja, D., Adv. X-ray Anal. 38, 471 (1995).Google Scholar
13.Rickerby, D.S., Jones, A.M., and Perry, A.J., Surf. Coat. Technol. 36, 631 (1988).CrossRefGoogle Scholar
14.Rickerby, D.S., Bull, S.J., Robertson, T., and Hendry, A., Surf. Coat. Technol. 41, 63 (1990).CrossRefGoogle Scholar
15.Rickerby, D.S. and Bull, S.J., Surf. Coat. Technol. 39/40, 315 (1989).CrossRefGoogle Scholar
16.Bull, S.J., Jones, A.M., McCabe, A.R., Saleh, A., and Rice-Evans, P., in Advances in Surface Engineering Volume II: Process Technology, edited by Datta, P.K. and Burnell-Gray, J.S. (Royal Society of Chemistry Publication 207, RSC, Cambridge, United Kingdom, 1997), pp. 4856.Google Scholar
17.Thompson, M.W., Defects and Radiation Damage in Metals, (Cambridge University Press, Cambridge, United Kingdom, 1969).Google Scholar
18.Naguib, H.M. and Kelly, R., Rad. Eff. 25, 1 (1975);CrossRefGoogle Scholar
Naguib, H.M., and Kelly, R., Rad. Eff. 25, 78 (1975).Google Scholar
19.Liu, L.J., Sood, D.K., and Manory, R.R., in Beam-Solid Interac-tions: Fundamentals and Applications, edited by Nastasi, M.A., Harriott, L.R., Herbots, N., and Averback, R.S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 469.Google Scholar
20.Liu, L.J., Sood, D.K., Manory, R.R., and Zhou, W., Surf. Coat. Technol. 71, 151 (1995).CrossRefGoogle Scholar
21.Perry, A.J., Manory, R.R., Rafaja, D., and Nowak, R., Vacuum 49, 89 (1998).CrossRefGoogle Scholar
22.Rafaja, D., Valvoda, V., Perry, A.J., and Treglio, J.R., Surf. Coat. Technol. 92, 135 (1997).CrossRefGoogle Scholar
23.Perry, A.J. and Schoenes, J., Vacuum 36, 149 (1986).CrossRefGoogle Scholar
24.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 845 (1984).CrossRefGoogle Scholar
25.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
26.Pauling, L., The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960).Google Scholar
27.Burnett, P.J. and Page, T.F., Rad. Eff. 97, 283 (1986).CrossRefGoogle Scholar
28.Sharkeev, Yu.P., Didenko, A.N., and Kozlovi, E.V., Surf. Coat. Technol. 65, 112 (1994).CrossRefGoogle Scholar
29.Sharkeev, Yu.P., Kozlov, E.V., Didenko, A.N., Kolupaeva, S.N., and Vihor, N.A., Surf. Coat. Technol. 83, 15 (1996).CrossRefGoogle Scholar
30.Sharkeev, Yu.P., Perry, A.J., and Fortuna, S.V., Surf. Coat. Technol. 109, 419 (1998).CrossRefGoogle Scholar
31.Roberts, S.G., Ph.D. Thesis., University of Cambridge, Cambridge, United Kingdom (1982).Google Scholar
32.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
33.Bull, S.J., Tribology Int. 7, 491 (1997).CrossRefGoogle Scholar
34.Arnell, R.D., Surf. Coat. Technol. 43/44, 674 (1990).CrossRefGoogle Scholar
35.Manory, R.R., Perry, A.J., Rafaja, D., and Nowak, R., Surf. Coat. Technol. 114, 137 (1999).CrossRefGoogle Scholar
36.Burnett, P.J. and Page, T.F., J. Mater. Sci. 20, 4624 (1985).CrossRefGoogle Scholar
37.Bull, S.J., Saleh, A., Rice-Evans, P., Perry, A.J., and Treglio, J.R., Surf. Coat. Technol. 91, 7 (1997).CrossRefGoogle Scholar
38.Metallography, Structures and Phase Diagrams, ASM Metals Handbook, Vol. 8 (ASM, Metals Park, OH, 1973), p. 322.Google Scholar
39.Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).Google Scholar
40.McCabe, A.R., Proctor, G., Jones, A.M., Bull, S.J., and Chivers, D.J., in Surface Engineering Volume III: Process Technology and Sur-faceAnalysis, editedby Dattaand, P.K., Gray, J.S. (Proc.3rdInt.Conf.on Advances in Coatings and Surface Engineering for Corrosion and Wear Resistance, (Royal Society of Chemistry, Cambridge, United Kingdom, 1993), pp. 163175.Google Scholar
41.Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
42.Norgett, M.J., Robinson, M.T., and Torrens, I.M., Nucl. Eng. Design 33, 50 (1975).CrossRefGoogle Scholar