Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T15:30:29.719Z Has data issue: false hasContentIssue false

Mechanisms for enhanced C54–TiSi2 formation in Ti–Ta alloy films on single-crystal Si

Published online by Cambridge University Press:  31 January 2011

A. Quintero
Affiliation:
Stevens Institute of Technology, Hoboken, New Jersey 07030
M. Libera
Affiliation:
Stevens Institute of Technology, Hoboken, New Jersey 07030
C. Cabral Jr.
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
C. Lavoie
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
J. M. E. Harper
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

The mechanisms are studied for enhanced formation of C54–TiSi2 at about 700 °C when rapid thermal annealing at 3 °C/s in N2 is performed on 32-nm-thick codeposited Ti–5.9 at.% Ta on Si(100) single-crystal substrates. The enhancement is related to an increased C54–TiSi2 nucleation rate due to the development of a multilayered microstructure. The multilayer microstructure forms at temperatures below 600 °C with the formation of an amorphous disilicide adjacent to the Si substrate and a M5Si3 (M = Ti, Ta) capping layer. This amorphous disilicide crystallizes at higher temperatures to C49–TiSi2. The multilayer microstructure introduces an additional interface that increases the area available for the heterogeneous nucleation of C54. The capping layer is identified as hexagonal Ti 5Si3 or its isomorphous compound (Ti1–xTax)5Si3. Crystal simulations demonstrate that C54(040) has a lattice mismatch of 6–7% relative to Ti5Si3(300) suggesting that a pseudomorphic epitaxial relationship may lower the interfacial energy between these two phases and reduce the energy barrier for C54 nucleation. A C40 disilicide phase was also observed at temperatures above that required to form C54–TiSi2 suggesting that, in the present experiments, the C40 phase does not play a major role in catalyzing C54 formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
2.Jeon, H., Sukow, C.A., Honeycutt, J.W., Rozgonyi, G.A., and Nemanich, R.J., J. Appl. Phys. 71, 4269 (1992).Google Scholar
3.Ma, Z. and Allen, L.H., in Evolution of Surface and Thin-Film Microstructure, edited by Atwater, H.A., Chason, E.H., Grabow, M.L., and Lagally, M.G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 593.Google Scholar
4.Quintero, A., Libera, M., Cabral, C. Jr, Clevenger, L.A., and Harper, J.M.E, in Thin Films–Structure and Morphology, edited by Moss, S.C., Ila, D., Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 441, Pittsburgh, PA, 1997), p. 303.Google Scholar
5.Mouroux, A., Zhang, S.L., Kaplan, W., Nygren, S., Ostling, M., and Petersson, C.S., Appl. Phys. Lett. 69, 975 (1996).CrossRefGoogle Scholar
6.Mouroux, A., Zhang, S.L., and Petersson, C.C., Phys. Rev. B 56, 10614 (1997).CrossRefGoogle Scholar
7.Cabral, C. Jr, Clevenger, L.A., Harper, J.M.E, d'Heurle, F.M., Roy, R.A., Saenger, K.L., Miles, G.L., and Mann, R.W., J. Mater. Res. 12, 304 (1997).Google Scholar
8.Cabral, C. Jr, Clevenger, L.A., Harper, J.M.E, d'Heurle, F.M., Harper, J.M.E, Roy, R.A., Lavoie, C., Saenger, K.L., Miles, G.L., Mann, R.W., and Nakos, J.S., Appl. Phys. Lett. 71, 3531 (1997).Google Scholar
9.Quintero, A., Libera, M., Cabral, C. Jr, Lavoie, C., and Harper, J.M.E, Microscopy and Microanalysis 4, 666 (1998).Google Scholar
10.Stadelmann, P. and Jouneau, P-H., EMS on line, Centre Interdepartmental de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne, http://cimewww.epfl.ch/CIOL/.Google Scholar
11.International Tables for X-Ray Crystallography (Kynoch Press, Birmingham, England, 1965), Vol. 1.Google Scholar
12. Joint Committee on Powder Diffraction Standards (JCPDS) (Swarthmore, PA).Google Scholar
13.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum Press, New York, 1996).CrossRefGoogle Scholar
14.Murarka, S.P., Silicides for VLSI applications (Academic Press, Orlando, 1983).Google Scholar
15.Musil, J., Bell, A.J., Vlcek, J., and Hurknas, T., J. Vac. Sci. Technol. A14, 2247 (1996).CrossRefGoogle Scholar
16.Marcus, P.M. and Jona, F., J. Phys. Condens. Matter 9, 6241 (1997).Google Scholar
17.Edington, J.W., Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold, New York, 1976).Google Scholar
18.Bonevich, J., van Heerden, D., and Josell, D., J. Mater. Res. 14, 1977 (1999).Google Scholar
19.Johnson, W. L. in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman and Hall, London, 1992).Google Scholar
20.Johnson, W.L., Phase Transformation in Thin Films—Thermodynamics and Kinetics, edited by Atzmon, M., Greer, A.L., Harper, J.M.E, and Libera, M.R. (Mater. Res. Soc. Symp. Proc. 311, Pittsburgh, PA, 1993), p. 71.Google Scholar
21.Smith, W.F., Foundations of Materials Science and Engineering (McGraw-Hill, New York, 1990).Google Scholar
22.Miedema, A.R., de Chatel, P.F., and de Boer, F.R., Physica B 100, 1 (1980).Google Scholar
23.Kemantick, R.J. and Meyers, C.E., Chem. Mater. 8, 287 (1996).CrossRefGoogle Scholar
24.Schlesinger, M.E., Chem. Rev. 90, 607 (1990).CrossRefGoogle Scholar
25.Porter, D.A. and Easterling, K.E., Phase Transformation in Metals and Alloys (Chapman and Hall, London, 1992).Google Scholar
26.Wang, M.H. and Chen, L.J., J. Appl. Phys. 61, 1339 (1992).Google Scholar
27.Clevenger, L.A., Cabral, C. Jr, Roy, R.A., Lavoie, C., JordanSweet, J., Brauer, S., Morales, G., Ludwig, K.F. Jr, and Stephenson, G.B., Thin Solid Films 289, 220 (1995).CrossRefGoogle Scholar
28.Noya, A., Takeyama, M., Sasaki, K., Aoyagi, E., and Hiraga, K., J. Vac. Sci. Technol. A 15, 253 (1997).CrossRefGoogle Scholar
29.Svilan, V., Rodbell, K.P., Clevenger, L.A., Cabral, C. Jr, Roy, R.A., Lavoie, C., Jordan-Sweet, J., and Harper, J.M.E, J. Elec. Mater. 26, 1090 (1997).Google Scholar