Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T00:48:58.154Z Has data issue: false hasContentIssue false

Mechanisms of intrinsic stresses generation in sputtered amorphous Si: H films

Published online by Cambridge University Press:  03 March 2011

Hiroki Takahashi
Affiliation:
Central Research Laboratories, Sumitomo Osaka Cement Co., Ltd., Toyotomi-cho 585, Funabashi-shi Chiba 274, Japan
Hirotoshi Nagata
Affiliation:
Central Research Laboratories, Sumitomo Osaka Cement Co., Ltd., Toyotomi-cho 585, Funabashi-shi Chiba 274, Japan
Haruki Kataoka
Affiliation:
Central Research Laboratories, Sumitomo Osaka Cement Co., Ltd., Toyotomi-cho 585, Funabashi-shi Chiba 274, Japan
Hiroshi Takai
Affiliation:
Department of Electrical Engineering, Tokyo Denki University, Kanda-Nishiki-cho 2-2. Chiyodaku, Tokyo 101, Japan
Get access

Abstract

The relation between stresses of sputtered a-Si: H films and the film deposition conditions are investigated. The film stresses change from a large compressive stress of 1000 MPa to an almost stress-free one. They arise from distortions of the Si network via the following two mechanisms. The first results from the inclusion of the Ar-sputtering gas into the films, which provides volume expansion of the film network. The other is due to structural disorders, such as a deviation of the Si bond angle which is generated during the deposition processes. Moreover, it is found that Si–H terminations in the films contribute to reducing the film stresses because the Si–H termination breaks and relaxes the Si network. These effects can be realized as long as the Si–H terminations are homogeneously distributed in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kawakami, S., 9th Optical Sensors Conference (Firenze, Italy), paper Th2 (May 1993), Vol. 12.Google Scholar
2Kawakami, S. and Hanaizumi, O., Trans. Institute of Electronics, Information and Communication Engineers (IEICE), C-1 77, 334 (1994).Google Scholar
3Siraishi, K. and Kawakami, S., Opt. Lett. 15, 516 (1990).CrossRefGoogle Scholar
4Mack, L. M. and Reisman, A., J. Electrochem. Soc. 136, 3433 (1989).CrossRefGoogle Scholar
5Beyer, W., Tetmhedrally Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzshce, H. (Plenum Press, New York, 1985), p. 129.CrossRefGoogle Scholar
6Ganguly, G. and Matsuda, A., Phys. Rev. B 7, 3661 (1993).CrossRefGoogle Scholar
7Smith, J.E. Jr., Brodsky, M.H., Crowder, B.L., and Nathan, M.I., Phys. Rev. Lett. 26, 642 (1971).CrossRefGoogle Scholar
8Brodsky, M.H., Cardona, M., and Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
9Beeman, D. and Albert, R., Adv. Phys. 26, 339 (1977).CrossRefGoogle Scholar
10Thorpe, M.F., Phys. Rev. B 8, 5352 (1973).CrossRefGoogle Scholar
11Takahashi, H., Nagata, H., and Kataoka, H., unpublished.Google Scholar
12Aboaf, J.A., J. Electrochem. Soc. 116, 1732 (1969).CrossRefGoogle Scholar
13Kurtz, S.R., Tsuno, Y. S., and Tsu, R., Appl. Phys. Lett. 49, 951 (1986).CrossRefGoogle Scholar
14Thoronton, J. A., Tabock, J., and Hoffman, D. W., Thin Solid Films 45, 387 (1977).Google Scholar
15Wu, C.T., Thin Solid Films 64, 103 (1979).CrossRefGoogle Scholar
16Takahashi, H., Nagata, H., and Kataoka, H., Jpn. J. Appl. Phys. 33, 4978 (1994).CrossRefGoogle Scholar
17Nowicki, R.S., Buckley, W.D., Mackintosh, W. D., and Mitchell, I. V., J. Vac. Sci. Technol. 11, 675 (1974).CrossRefGoogle Scholar
18Harbison, J.P., Williams, A.J., and Lang, D. V., J. Appl. Phys. 55, 946 (1984).CrossRefGoogle Scholar
19de Sacde, J.C.G., Afonso, C. N., Escudero, J.L., Serna, R., Catalina, F., and Bernabeu, E., Appl. Opt. 31, 6133 (1992).Google Scholar
20Beeman, D., Tsu, R., and Thorpe, M.F., Phys. Rev. B 32, 874 (1985).CrossRefGoogle Scholar
21Takahashi, H., Nagata, H., Kataoka, H., and Takai, H., J. Appl.Phys. 75, 2667 (1994).CrossRefGoogle Scholar
22Knights, J.C., Jpn. Appl. Phys. 18, 101 (1979).CrossRefGoogle Scholar
23Lizima, S., Okushi, H., Matsuda, A., Yamasaki, S., Nakagawa, K., Mitsumura, M., and Tanaka, K., Jpn. J. Appl. Phys. 19, 521 (1980).Google Scholar
24Abelson, J.R., Appl. Phys. A56, 493 (1993).CrossRefGoogle Scholar
25Banerjee, R., Sharma, S. N., Bandyopadhyay, A. K., Batabyal, A. K., and Barua, A.K., J. Mater. Sci. Lett. 12, 1316 (1993).CrossRefGoogle Scholar
26Moss, S.C. and Graczyk, J.F., Proc. 10th Int. Conf. Phys. Semicond., edited by Keller, S.P.et al. (U.S. Atom. Energy Commission, 1970), p. 658.Google Scholar
27Tsuji, K. and Minomura, S., J. Phys. 42, C4233 (1981).Google Scholar
28Barna, A., Barna, P.B., Radnoczi, G., Toth, L., and Thomas, P., Phys. Status Solidi A 41, 81 (1977).CrossRefGoogle Scholar
29Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979).CrossRefGoogle Scholar
30Dohler, G. H., Dandoloff, R., and Bilz, H., J. Non-Cryst. Solids 42, 87 (1980).CrossRefGoogle Scholar
31Shiraizu, T., J. Non-Cryst. Solids 59/60, 117 (1983).Google Scholar