Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:22:27.408Z Has data issue: false hasContentIssue false

Mechanochemical study of the hydriding properties of nanostructured Mg2Ni–Ni composites

Published online by Cambridge University Press:  01 November 2004

G. Mulas
Affiliation:
Dipartimento di Chimica, Università di Sassari, I-07100 Sassari, Italy
L. Schiffini
Affiliation:
Dipartimento di Chimica, Università di Sassari, I-07100 Sassari, Italy
G. Cocco*
Affiliation:
Dipartimento di Chimica, Università di Sassari, I-07100 Sassari, Italy
*
a)Address all correspondence to this author. e-mail: cocco@uniss.it
Get access

Abstract

A comprehensive approach is presented for defining hydrogen activation and absorbing kinetics in heterogeneous Mg2Ni/Ni powder composites that were subjected to mechanical refinement. Hydriding tests were performed under conventional hydrogen dissolving and under reactive milling. Irrespective of the absorbing mode, the absorption kinetics is deceleratory throughout. Under conventional thermodynamic conditions, the hydriding rate depends strongly on the microstructural features of both the absorbing Mg2Ni intermetallic and the Ni phase. The latter plays an important role in the dissociative chemisorption of hydrogen. Under milling the hydrogen uptake and the hydriding kinetics also depend on the intensity of the milling processing, IM (watt g−1), with the absorption rate increasing exponentially with IM. The mechanical treatment was found effective even when thermodynamic absorption reached saturation level. Hydriding rates, mechanochemical gains, and instantaneous mechanochemical yields (mol J−1) were used to compare the processes on an absolute scale and to spotlight possible mechanisms controlling kinetics trends and absorbing features under milling.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schlapbach, L., Percheron-Guegan, A., Welter, J.M., Flanagan, T.B., Oataes, W.A., Yvon, K., Fischer, P., Gupta, M., Griessen, R., Riesterer, R., Wiesinger, G. and Hilscher, G. Hydrogen in Intermetallic Compounds I & II, Topics in Applied Physics, Vol. 63, 67, edited by Schlapbach, L. (Springer-Verlag, Berlin, Germany, 1988 , 1992)Google Scholar
2Pettersson, J. and Hjortsberg, O.Hydrogen storage alternatives–a technological and economic assessment, KFB-Kommunikationsforsknings-beredningen, Stockholm, KFBs DNR Report 1998-0047, Volvo Tecnisk Utueckling AB, Stockholm, 1999Google Scholar
3Conte, M., Iacobazzi, A., Ronchetti, M. and Vellone, R.: Hydrogen economy for a sustainable development: State of the art and technical perspectives. J. Power Sources 100, 171 (2001).CrossRefGoogle Scholar
4Dantzer, P.: Properties of intermetallic compounds suitable for hydrogen storage applications. Mater. Sci. Eng. A 329, 313 (2002).CrossRefGoogle Scholar
5Proc. 8th Int. Symp. on Metal Hydrogen Systems, Fundamentals and Applications (MH2002) edited by Percheron-Guegan, A., and Gupta, M.. J. Alloys Compd. 356–357, 1 (2003).Google Scholar
6Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
7Orimo, S. and Fujii, H.: Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: A review. Intermetallics 6, 185 (1998).CrossRefGoogle Scholar
8Zaluska, A., Zaluski, L. and Strom-Olsen, J.O.: Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 72, 157 (2001).CrossRefGoogle Scholar
9Huot, J.: Nanocrystalline materials for hydrogen storage. In Nanoclusters and Nanocrystals, edited by Nalwa, H.S. (American Scientific Publishers, Stevenson Ranch, CA, 2003), pp. 5385Google Scholar
10Stepanov, A., Ivanov, E., Konstanchuk, I. and Boldyrev, Y.: Hydriding properties of mechanical alloys Mg-Ni. J. Less-Common Met. 131, 89 (1987).CrossRefGoogle Scholar
11Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L.: Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A. 21, 2333 (1990).CrossRefGoogle Scholar
12Aoki, K., Aoyagi, H., Memezawa, A. and Masumoto, T.: Effect of ball milling on the hydrogen absorption rate of FeTi and Mg2Ni compounds. J. Alloys Compd. L7–L9, 203 (1994).Google Scholar
13Chen, Y. and Williams, J.S.: Formation of metal hydrides by mechanical alloying. J. Alloys Compd. 217, 181 (1995).CrossRefGoogle Scholar
14Zaluski, L., Zaluska, A. and Strom-Olsen, J.O.: Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloys Compd. 217, 245 (1995).CrossRefGoogle Scholar
15Wasz, M.L. and Schwarz, R.B.: Structure and properties of metal hydrides prepared by mechanical alloying. Mater. Sci. Forum 225–227, 859 (1996).CrossRefGoogle Scholar
16Huot, J., Liang, G. and Schulz, R.: Mechanically alloyed metal hydride systems. Appl. Phys. A 72, 187 (2001).CrossRefGoogle Scholar
17Weissmuller, J. and Lemier, C.: Lattice constant of solid solution microstructure: The case of nanocrystalline PdH. Phys. Rev. Lett. 82, 213 (1999).CrossRefGoogle Scholar
18Shulz, R., Liang, G. and Huot, J.: Hydrogen sorption in mechanically alloyed nanocrystalline and disordered materials. In Materials Science: Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modellin g, Proc. 22 Riso Int. Symp., edited by Dinesen, A.R., Eldrup, M., Juul, D. Jensen, Linderoth, S., Pedersen, T.B., and Wert, J.A. (Riso National Laboratory, Roskilde, Denmark, 2001), p. 141Google Scholar
19Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
20Butyagin, P.Yu.: Mechanochemical reactions of solids with gases. Reactivity of Solids 1, 345 (1986).CrossRefGoogle Scholar
21Cocco, G., Mulas, G. and Schiffini, L.: Mechanical alloying and reactive milling. Mater. Trans. JIM 36–2, 150 (1995).CrossRefGoogle Scholar
22Butyagin, P.Yu. and Pavlichev, I.K.: Determination of energy yield of mechanochemical reactions. Reactivity of Solids 1, 361 (1986).CrossRefGoogle Scholar
23Mulas, G., Schiffini, L. and Cocco, G.: Impact frequency and energy transfer in milling processes: An experimental approach. Mater. Sci. Forum 225–227, 237 (1996).CrossRefGoogle Scholar
24Heinicke, G.: Tribochemistry (Akademie-Verlag, Berlin, Germany, 1984), pp. 97180Google Scholar
25Ponec, V. and Bond, G.C.: Catalysis by Metals and Alloys, Studies in Surface Science and Catalysis edited by Delmon, B. and Yates, J.T. (Elsevier, Amsterdam, The Netherlands, 1995), pp. 175218Google Scholar
26Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
27Lutterotti, L. and Gialanella, S.: X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater. 46, 101 (1998).CrossRefGoogle Scholar
28McCormick, P.G., Huang, H., Dallimore, M.P., Ding, J. and Pan, J.: The dynamics of mechanical alloying. In Mechanical Alloying for Structural Applications, edited by deBarbadillo, J.J., Froes, F.H., and Schwarz, R. (Proc. 2nd Int. Conf. Mechanical Alloying for Structural Applications, Sept. 1993, Vancouver, Canada), p. 45Google Scholar
29Magini, M. and Iasonna, A.: Energy transfer in mechanical alloying. Mater. Trans. JIM 36, 123 (1995).CrossRefGoogle Scholar
30Abdellaoui, M. and Gaffet, E.: The physics of mechanical alloying in a planetary mill: Mathematical treatment. Acta Metall. Mater. 43, 1087 (1995).CrossRefGoogle Scholar
31Maurice, D. and Courtney, T.H.: Milling dynamics: Part II: Dynamics of a SPEX mill and a one-dimensional mill. Metall. Mater. Trans. A 27, 1973 (1996).CrossRefGoogle Scholar
32Delogu, F., Monagheddu, M., Mulas, G., Schiffini, L. and Cocco, G.: Impact characteristics and mechanical alloying processes by ball milling: Experimental evaluation and modelling outcomes. Int. J. Non-equilibrium Proc. 11, 235 (2000).Google Scholar
33Gutman, E.M.: Mechanochemistry of Materials (Cambridge International Science Publishing, Cambridge, U.K., 1998), pp. 3944Google Scholar
34Orimo, S. and Fujii, H.: Materials science of Mg-Ni-based new hydrides. Appl. Phys. A 72, 167 (2001).CrossRefGoogle Scholar
35Mulas, G., Conti, L., Scano, G., Schiffini, L. and Cocco, G.: Mechanically driven CO hydrogenation over NiZr amorphous catalysts. Mater. Sci. Eng. A 181, 1085 (1994).CrossRefGoogle Scholar
36Berlouis, L.E.A., Cabrera, E., Hall-Barientos, E., Hall, P.J., Dodd, S.B., Morris, S. and Imam, M.A.: Thermal analysis investigation of hydriding properties of nanocrystalline Mg-Ni and Mg-Fe–based alloys prepared by high-energy ball milling. J. Mater. Res. 16, 45 (2001).CrossRefGoogle Scholar
37Ivanov, E., Konstanchuk, I., Stepanov, A. and Boldyrev, V.: Magnesium mechanical alloys for hydrogen storage. J. Less-Common Met. 131, 25 (1987).CrossRefGoogle Scholar
38Tanguy, B., Soubeyroux, J.L., Pezat, M., Portier, J. and Hagenmuller, P.: Amelioration des conditions de synthèse de l’hydrure de Mg a l’aide d’adjuvants. Mater. Res. Bull. 11, 1441 (1976).CrossRefGoogle Scholar
39Zaluski, L., Zaluska, A., Tessier, P., Strom-Olsen, J.O. and Schulz, R.: Catalyitc effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi. J. Alloys Compd. 217, 295 (1995).CrossRefGoogle Scholar
40Bernard, F., Charlot, F., Gaffet, E. and Niepce, N.J.: Optimization of MASHS parameters to obtain a nanometric FeAl intermetallic. Int. J. Self-Propag. High-Temp. Synth. 7, 233 (1998).Google Scholar
41Delogu, F., Schiffini, L. and Cocco, G.: The invariant laws of the amorphization process by mechanical alloying. Philos. Mag. A 81, 1917 (2001).CrossRefGoogle Scholar
42Monagheddu, M., Doppiu, S., Deidda, C. and Cocco, G.: The self-combustion of structurally co-deformed powder mixtures: A direct view of the process. J. Phys. D, Appl. Phys. 36, 1917 (2003).CrossRefGoogle Scholar
43Lutterotti, L., Ceccato, R., Maschio, R. Dal and Pagani, E.: Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater. Sci. Forum 278, 87 (1998).CrossRefGoogle Scholar
44Boldyrev, V.V., Bulens, M. and Delmon, B.: The Control of the Reactivity of Solids (Elsevier, Amsterdam, The Netherlands, 1979), p. 20Google Scholar
45Bloch, J. and Mintz, M.H.: Kinetics and mechanism of metal hydrides formation, A review. J. Alloys Compd. 253, 529 (1997).CrossRefGoogle Scholar
46Mintz, M.H. and Bloch, J.: Evaluation of the kinetics and mechanisms of hydriding reactions. Prog. Solid. State Chem. 16, 163 (1985).CrossRefGoogle Scholar
47Anderson, J.R.: Structure of Metallic Catalysts (Academic Press, London, U.K., 1975), p. 296Google Scholar
48Thomas, J.M. and Thomas, W.J.: Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997), pp. 65144Google Scholar
49Butyagin, P.Yu.: Active states in mechanochemical reactions. Sov. Sci. Rev. B Chem. 14, 1 (1989).Google Scholar
50Dunlap, R.A., Small, D.A. and Mackay, G.R.: Hydriding reactions induced by ball milling in group IV and V transition metals. J. Mater. Sci. Lett. 18, 881 (1999).CrossRefGoogle Scholar
51Delogu, F. and Cocco, G.: Phase transformation kinetics in immiscible Ag-Cu and Co-Cu systems under mechanical processing conditions. (submitted)Google Scholar
52Deidda, C., Delogu, F., Maglia, F., Anselmi-Tamburini, U. and Cocco, G.: Mechanical processing and self-sustaining high-temperature synthesis of TiC powders. Mater. Sci. Eng. A 375, 800 (2004).CrossRefGoogle Scholar
53Shaffer, G.B. and Forrester, J.S.: The influence of collision energy and strain accumulation on the kinetics of mechanical alloying. J. Mater. Sci. 32, 3157 (1997).CrossRefGoogle Scholar
54Li, L., Akiyama, T. and Yagi, J.: Hydrogen storage alloy of Mg2NiH4 hydride produced by hydriding combustion synthesis from powder of mixture metal. J. Alloys Compd. 308, 98 (2000).CrossRefGoogle Scholar
55Munir, Z.A. and Anselmi-Tamburini, U.: Self-propagating exothermic reactions: The synthesis of high.temperature materials by combustion. Mater. Sci. Rep. 3, 227 (1989).CrossRefGoogle Scholar