Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T15:06:38.115Z Has data issue: false hasContentIssue false

Mechanochemically synthesized NbC cermets: Part I. Synthesis and structural development

Published online by Cambridge University Press:  31 January 2011

B. R. Murphy
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, Michigan 49931
T. H. Courtney
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, Michigan 49931
Get access

Abstract

The mechanochemical synthesis of NbC-based cermets is described. Nanocrystalline NbC is synthesized by room-temperature milling of Nb and graphite (or hexane) mixtures. While some structural coarsening occurs during powder consolidation to full density, a nanoscale structure is maintained. Grinding media wear occurs during milling, and milled powders contain Fe from this abrasion. This phase, homogeneously distributed in milled powders, segregates during consolidation and heat treatment, and a cermetlike microstructure results. Copper added to the powder charge yields NbC–Cu or NbC–Cu-Fe cermets. Copper-containing materials have different phase morphologies. In particular, relatively large NbC particles are dispersed in a matrix containing finer NbC and metal particles. Higher Cu-content materials also develop a pure Cu constituent on heat treatment. A companion paper, “Mechanochemically synthesized NbC cermets: Part II. Mechanical properties,” addresses aspects of the mechanical behavior of these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, P.Y. and Koch, C.C., Appl. Phys. Lett. 50, 1578 (1987).CrossRefGoogle Scholar
2.Petzold, F., J. Less-Common Met. 140, 85 (1988).CrossRefGoogle Scholar
3.Koch, C.C., Scripta Mater. 34, 21 (1996).CrossRefGoogle Scholar
4.Schwarz, R. and Petrich, R.R., J. Less-Common Met. 140, 171 (1988).CrossRefGoogle Scholar
5.Aning, A.O., Wang, Z., and Courtney, T.H., Acta Metall. Mater. 41, 165, (1993).CrossRefGoogle Scholar
6.Eckert, J., Holzer, J.C., Krill, C.E., and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
7.Hellstern, E., Fecht, H.J., Fu, Z., and Johnson, W.L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
8.Vliaev, R.Z., Mishra, R.S., Groza, J., and Mukherjee, A.K., Scripta Mater. 34, 1443 (1996).CrossRefGoogle Scholar
9.Koch, C.C., NanoStruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
10.McDermott, B.T. and Koch, C.C., Scripta Metall. 20, 669 (1986).CrossRefGoogle Scholar
11.Morris, M.A. and Morris, D.G., Solid State Powder Processing, edited by Clauer, A.H. and deBarbadillo, J.J. (TMS, Warrendale, PA, 1990), p. 299.Google Scholar
12.Zhao, Q.H., Wu, J., Chadda, A.K., Chen, H.S., Parsons, J.D., and Downham, D., J. Mater. Res. 9, 2096 (1994).CrossRefGoogle Scholar
13.Sherif El-Eskandarany, M., Oromi, M., Ishikuro, M., Konno, T.J., Tadada, K., Sumiyana, K., Hirai, T., and Suzuki, K., Metall. Mater. Trans. A, 27A, 4210 (1996).CrossRefGoogle Scholar
14.Sherif El-Eskandarany, M., Sumiyama, K., Aoki, K., Masumoto, T., and Suzuki, K., J. Mater. Res. 9, 2891 (1994).CrossRefGoogle Scholar
15.Jo, S., Lee, G., Moon, J., and Kim, Y., Acta Mater. 44, 4317 (1997).CrossRefGoogle Scholar
16.Kosmac, T., Maurice, D., and Courtney, T.H., J. Am. Ceram. Soc. 76, 2345 (1993).CrossRefGoogle Scholar
17.Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M., and Evans, A.G., Acta Metall. 36, 945 (1988).CrossRefGoogle Scholar
18.Sigl, L.S. and Fischmeister, H.F., Acta Metall. 36, 887 (1988).CrossRefGoogle Scholar
19.Pickens, J.R. and Gurland, J., Mater. Sci. Eng. 33, 135 (1978).CrossRefGoogle Scholar
20.Godse, R. and Gurland, J., Mater. Sci. Eng. A105, 331 (1988).CrossRefGoogle Scholar
21.Kristic, V.V. and Nicholson, P.S., J. Am. Ceram. Soc. 64, 499 (1981).CrossRefGoogle Scholar
22.Bao, G. and Hui, C., Int. J. Solid Struct. 26, 631 (1990).Google Scholar
23.Sigl, L. and Exner, H.E., Metall. Trans. A, 18A, 1299 (1987).CrossRefGoogle Scholar
24.Flinn, B.D., Ruhle, M., and Evans, A.G., Acta Metall. 37, 3001 (1989).CrossRefGoogle Scholar
25.Przystupa, M.A. and Courtney, T.H., Metall. Trans. A, 13A, 881 (1982).CrossRefGoogle Scholar
26.Mendiratta, M.G., Lewandowski, J.J., and Dimidak, D.M., Metall. Trans. A 22A, 1573 (1991).CrossRefGoogle Scholar
27.Ravichandran, K.S., Acta Metall. Mater. 42, 143 (1994).CrossRefGoogle Scholar
28.Ravichandran, K.S., Scripta Metall. Mater. 26, 1389 (1992).CrossRefGoogle Scholar
29.Nakamura, M. and Gurland, J., Metall. Trans. A 11A, 141 (1980).CrossRefGoogle Scholar
30.Kristic, V.K., J. Am. Ceram. Soc. 64, 499 (1981).CrossRefGoogle Scholar
31.Aghajanian, M.K., MacMillan, N.H., Kennedy, C.R., Luszcz, S.J., and Roy, R., J. Mater. Sci. 24, 658 (1989).CrossRefGoogle Scholar
32.Murphy, B.R. and Courtney, T.H., Nanostruct. Mater. 4, 365 (1994).CrossRefGoogle Scholar
33.Murphy, B.R. and Courtney, T.H., Novel Techniques in Synthesis and Processing of Advanced Materials, edited by Singh, J. and Copley, S.M. (TMS, Warrendale, PA, 1995), p. 433.Google Scholar
34.Murphy, B.R., Ph.D. Thesis, Michigan Technological University (1996).Google Scholar
35.Ardell, A.J., Acta Metall. 20, 601 (1972).CrossRefGoogle Scholar
36.Lin, L.Y., Courtney, T.H., Stark, J.P., and Ralls, K.M., Metall. Trans. A 7A, 1435 (1976).CrossRefGoogle Scholar
37.Comstock, R.J. Jr, and Courtney, T.H., Metall. Mater. Trans. A 25A, 2091 (1994).CrossRefGoogle Scholar