Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:55:54.429Z Has data issue: false hasContentIssue false

Mesoporous Co–B amorphous alloy films with enhanced catalytic efficiency prepared from a mixed-surfactant solution

Published online by Cambridge University Press:  31 January 2011

Hui Li*
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Jun Liu
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Haixia Yang
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Hexing Li
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: lihui@shnu.edu.cn
Get access

Abstract

Co–B films were synthesized through the solvent evaporation-assisted chemical reduction method by using a mixed-surfactant solution containing Span 40 and (1S)-(+)-10-camphorsulfonic acid. With the characterization of x-ray diffraction, selected-area electron diffraction, x-ray photoelectron spectroscopy, scanning electron micrography, and transmission electron micrography, the resulting Co–B films were identified to be amorphous alloys with mesoporous structure. The synergistic effect of two kinds of surfactants is essential for the formation of mesoporous structure. During liquid-phase cinnamaldehyde hydrogenation to cinnamyl alcohol, the mesoporous Co–B amorphous alloy films exhibited a much higher activity and better selectivity than the solid Co–B nanoparticles prepared by direct reduction of cobalt ions with borohydride. The enhanced activity is attributed to both the mesoporous and the film structure, which provides more Co active sites for the adsorption and diffusion of reactant molecules. The improved selectivity may be related to the difference in surface curvature.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
2.Van Wonterghem, J., Mrup, S., Koch, C.J.W., Charles, S.W., and Wells, S.: Formation of ultrafine amorphous alloy particles by reduction in aqueous solution. Nature 322, 622 (1986).CrossRefGoogle Scholar
3.Molnar, A., Smith, G.V., and Bartok, M.: New catalytic materials from amorphous metal alloys. Adv. Catal. 36, 329 (1989).CrossRefGoogle Scholar
4.Baiker, A.: Metallic glasses in heterogeneous catalysis. Faraday Discuss. Chem. Soc. 87, 239 (1989).CrossRefGoogle Scholar
5.Chen, Y.: Chemical preparation and characterization of metalmetalloid ultrafine amorphous alloy particles. Catal. Today 44, 3 (1998).CrossRefGoogle Scholar
6.Deng, J.F., Li, H.X., and Wang, W.J.: Progress in design of new amorphous alloy catalysts. Catal. Today 51, 113 (1999).CrossRefGoogle Scholar
7.Schlgl, R. and Hamid, S.B. Abd: Nanocatalysis: Mature science revisited or something really new. Angew. Chem. Int. Ed. 43, 1628 (2004).CrossRefGoogle Scholar
8.Zhang, H., Zhu, Q., Zhang, Y., Wang, Y., Zhao, L., and Yu, B.: Onepot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater. 17, 2766 (2007).CrossRefGoogle Scholar
9.Attard, G.S., Gltner, C.G., Corker, J.M., Henke, S., and Templer, R.H.: Liquid-crystal templates for nanostructured metals. Angew. Chem., Int. Ed. Engl. 36, 1315 (1997).CrossRefGoogle Scholar
10.Schth, F.: Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 13, 3184 (2001).CrossRefGoogle Scholar
11.Yamauchi, Y. and Kuroda, K.: Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem. Asian J. 3, 664 (2008).CrossRefGoogle ScholarPubMed
12.Saramat, A., Andersson, M., Hant, S., Thormhlen, P., Skoglundh, M., Attard, G.S., and Palmqvist, A.E.C.: Differences in catalytic properties between mesoporous and nanoparticulate platinum. Eur. Phys. J. D 43, 209 (2007).CrossRefGoogle Scholar
13.Li, H.X., Zhao, Q.F., Wan, Y., Dai, W.L., and Qiao, M.H.: Selfassembly of mesoporous NiB amorphous alloy catalysts. J. Catal. 244, 251 (2006).CrossRefGoogle Scholar
14.Li, H., Yang, H.X., and Li, H.X.: Highly active mesoporous CoB amorphous alloy catalyst for cinnamaldehyde hydrogenation to cinnamyl alcohol. J. Catal. 251, 233 (2007).CrossRefGoogle Scholar
15.Meng, Q., Li, H., and Li, H.X.: Self-assembly of mesoporous ruthenium-boron amorphous alloy catalysts with enhanced activity in maltose hydrogenation to maltitol. J. Phys. Chem. C 112, 11448 (2008).CrossRefGoogle Scholar
16.Lu, Y.F., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W.L., Guo, Y.X., Soyez, H., Dunn, B., Huang, M.B., and Zink, J.I.: Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 389, 364 (1997).CrossRefGoogle Scholar
17.Yamauchi, Y., Ohsuna, T., and Kuroda, K.: Synthesis and structural characterization of a highly ordered mesoporous PtRu alloy via evaporation-mediated direct templating. Chem. Mater. 19, 1335 (2007).CrossRefGoogle Scholar
18.Sakai, G., Yoshimura, T., Isohata, S., Uota, M., Kawasaki, H., Kuwahara, T., Fujikawa, D., and Kijima, T.: Synthesis of nanogroove- network-structured platinum nanosheets and their carbonsupported forms using a mixed-surfactant templating approach. Adv. Mater. 19, 237 (2007).CrossRefGoogle Scholar
19.Luo, K., Walker, C.T., and Edler, K.J.: Mesoporous silver films from dilute mixed-surfactant solutions by using dip-coating. Adv. Mater. 19, 1506 (2007).CrossRefGoogle Scholar
20.Pei, Y., Hu, H.R., Fang, J., Qiao, M.H., Dai, W.L., Fan, K.N., and Li, H.X.: Liquid phase hydrogenation of crotonaldehyde over Sn-promoted amorphous CoB catalysts. J. Mol. Catal. A: Chem. 211, 243 (2004).CrossRefGoogle Scholar
21.Pei, Y., Wang, J.Q., Fu, Q., Guo, P.J., Qiao, M.H., Yan, S.R., and Fan, K.N.: A non-noble amorphous CoFeB catalyst highly selective in liquid phase hydrogenation of crotonaldehyde to crotyl alcohol. New J. Chem. 29, 992 (2005).CrossRefGoogle Scholar
22.Pei, Y., Guo, P.J., Qiao, M.H., Li, H.X., Wei, S.Q., He, H.Y., and Fan, K.N.: The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. J. Catal. 248, 303 (2007).CrossRefGoogle Scholar
23.Marinellik, T.B.L.W., Nabuurs, S., and Ponec, V.: Activity and selectivity in the reactions of substituted a, -unsaturated aldehydes. J. Catal. 151, 431 (1995).CrossRefGoogle Scholar
24.Li, H.X., Wu, Y.D., Luo, H.S., Wang, M.H., and Xu, Y.P.: Liquid phase hydrogenation of acetonitrile to ethylamine over the CoB amorphous alloy catalyst. J. Catal. 214, 15 (2003).CrossRefGoogle Scholar
25.Scholten, J.J.F., Pijers, A.P., and Hustings, A.M.L.: Surface characterization of supported and nonsupported hydrogenation catalysts. Catal. Rev.Sci. Eng. 27, 151 (1985).CrossRefGoogle Scholar
26.Curran, S.A., Zhang, D., Dundigal, S., and Blau, W.: Doping properties of polydithienylmethine: A study on the correlation between polymer chain length, spectroscopy, and transport. J. Phys. Chem. B 110, 3924 (2006).CrossRefGoogle Scholar
27.Lee, K., Kwag, H., Kim, B., Kim, G.J., Kim, K.H., and Choe, S.: Temperature-dependent desorption of surfactants in LLDPE blend films. J. Polym. Sci., Part B: Polym. Phys. 39, 218 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
28.Yokoyama, A., Komiyama, H., Inoue, H., Masumoto, T., and Kimura, H.M.: The hydrogenation of carbon monoxide by amorphous ribbons. J. Catal. 68, 355 (1981).CrossRefGoogle Scholar
29.Klein, S., Martens, J.A., Parton, R., Vercruysse, K., Jacobs, P.A., and Maier, W.F.: Amorphous microporous mixed oxides as selective redox catalysts. Catal. Lett. 38, 209 (1996).CrossRefGoogle Scholar
30.McIntyre, N.S. and Cook, M.G.: X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47, 2208 (1975).CrossRefGoogle Scholar
31.Li, H., Li, H.X., Dai, W.L., Wang, W.J., Fang, Z.G., and Deng, J.F.: XPS studies on surface electronic characteristics of NiB and NiP amorphous alloy and its correlation to their catalytic properties. Appl. Surf. Sci. 152, 25 (1999).CrossRefGoogle Scholar
32.Glavee, G.N., Klabunde, K.J., Sorensen, C.M., and Hadjipanayis, G.C.: Sodium borohydride reduction of cobalt ions in nonaqueous media. Formation of ultrafine particles (nanoscale) of cobalt metal. Inorg. Chem. 32, 474 (1993).CrossRefGoogle Scholar
33.Li, H.X., Li, H., Dai, W.L., and Qiao, M.H.: Preparation of the NiB amorphous alloys with variable boron content and its correlation to the hydrogenation activity. Appl. Catal., A 238, 119 (2003).CrossRefGoogle Scholar
34.Zhang, J., Dai, Z., Bao, J., Zhang, N., and Lpez-Quintela, M.A.: Self-assembly of Co-based nanosheets into novel nest-shaped nanostructures: Synthesis and characterization. J. Colloid Interface Sci. 305, 339 (2007).CrossRefGoogle ScholarPubMed
35.Shen, B.R., Wei, S.Q., Fan, K.N., and Deng, J.F.: EXAFS study on ultrafine NiCoB amorphous catalysts. Appl. Phys. A 65, 295 (1997).CrossRefGoogle Scholar
36.Dag, ., Alayolu, S., Tura, C., and Celik, .: Lyotropic liquidcrystalline phase of oligo(ethylene oxide) surfactant/transition metal salt and the synthesis of mesostructured cadmium sulfide. Chem. Mater. 15, 2711 (2003).CrossRefGoogle Scholar
37.Noller, H. and Lin, W.M.: Activity and selectivity of nickelcopper/alumina catalysts for hydrogenation of crotonaldehyde and mechanism of hydrogenation. J. Catal. 85, 25 (1984).CrossRefGoogle Scholar
38.Boellaard, E., Vreeburg, R.J., Gijzeman, O.L.J., and Geus, J.W.: The interaction of carbon monoxide with nickel-iron alloys. A comparison between single crystal surfaces and supported catalysts. J. Mol. Catal. 92, 299 (1994).CrossRefGoogle Scholar
39.Gallezot, P. and Richard, D.: Selective hydrogenation of, -unsaturated aldehydes. Catal. Rev.Sci. Eng. 40, 81 (1998).CrossRefGoogle Scholar