Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T23:53:41.494Z Has data issue: false hasContentIssue false

Mesoscopic structure of SiC fibers by neutron and x-ray scattering

Published online by Cambridge University Press:  31 January 2011

Kentaro Suzuya*
Affiliation:
National Laboratory for High Energy Physics, Tsukuba 305, Japan
Michihiro Furusaka
Affiliation:
National Laboratory for High Energy Physics, Tsukuba 305, Japan
Noboru Watanabe
Affiliation:
National Laboratory for High Energy Physics, Tsukuba 305, Japan
Makoto Osawa
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba 305, Japan
Kiyohito Okamura
Affiliation:
College of Engineering, University of Osaka Prefecture, Sakai, Osaka 593, Japan
Kaoru Shibata
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980, Japan
Tomoaki Kamiyama
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980, Japan
Kenji Suzuki
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980, Japan
*
a)Department of Synchrotron Radiation Facility Project, Japan Atomic Energy Research Institute (JAERI), Tokai-mura, Naka-gun, Ibaraki 319–11, Japan.
Get access

Abstract

Mesoscopic structures of SiC fibers produced from polycarbosilane by different methods were studied by diffraction and small-angle scattering of neutrons and x-rays. Microvoids of a size of 4–10 Å in diameter have been observed for the first time by neutron scattering in a medium momentum transfer range (Q = 0.1–1.0 Å−1). The size and the volume fraction of β–SiC particles were determined for fibers prepared at different heat-treatment temperatures. The results show that wide-angle neutron scattering measurements are especially useful for the study of the mesoscopic structure of multicomponent materials.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yajima, S., Hayashi, J., Omori, M., and Okamura, K., Nature (London) 261, 683 (1976).CrossRefGoogle Scholar
2.Pysher, D. J., Goretta, K. C., Hodder, R. S. Jr., and Tressler, R. E., J. Am. Ceram. Soc. 72, 284288 (1989).CrossRefGoogle Scholar
3.Okamura, K., Sato, M., Seguchi, T., and Kawanishi, S., J. Jpn. Soc. Powder and Powder Metallurgy 35, 170173 (1988).CrossRefGoogle Scholar
4.Okamura, K., Matsuzawa, T., Sato, M., Kayano, H., Morozumi, S., Tezuka, H., and Kohyama, A., J. Nucl. Mater. 155–157, 329333 (1988).CrossRefGoogle Scholar
5.Maniette, Y. and Oberlin, A., J. Mater. Sci. 24, 33613370 (1989).CrossRefGoogle Scholar
6.Laffon, C., Flank, A. M., Lagarde, P., Laridjani, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J., Miquel, J. L., Hommel, H., and Legrand, A. P., J. Mater. Sci. 24, 15031512 (1989).CrossRefGoogle Scholar
7.Sasaki, Y., Nishina, Y., Sato, M., and Okamura, K., J. Mater. Sci. 22, 443448 (1987).CrossRefGoogle Scholar
8.Okamura, K. and Seguchi, T., J. Inorg. Organometallic Polymers 2, 171179 (1992).Google Scholar
9.Furusaka, M., Watanabe, N., Suzuya, K., Fujikawa, I., and Satoh, S., Proceedings of the 11th Meeting of the International Collaboration on Advanced Neutron Sources–ICANS XI, Tsukuba, Japan, October, 1990, edited by Misawa, M., Furusaka, M., Ikeda, H., and Watanabe, N. (KEK Report 90–25, Tsukuba, Japan, 1991), pp. 677683.Google Scholar
10.Kamiyama, T., Ito, T., and Suzuki, K., J. Non-Cryst. Solids 100, 466470 (1988).CrossRefGoogle Scholar
11.Kostorz, G., in Treatise on Materials Science and Technology, Vol. 15: Neutron Scattering, edited by Kostorz, G. (Academic Press, New York, 1979), pp. 227289.Google Scholar
12.Seguchi, T., Sugimoto, M., and Okamura, K., Proceedings of the High Temperature Ceramic Matrix Composites (HT-CMC) in ECCM-6 and Associated Conference, Bordeaux, France, September, 1993, edited by Naslain, R., Lamon, J., and Doumeingts, D. (Woodhead, 1993), pp. 5157.Google Scholar
13.Lemmel, H. D., Nukleonik 7, 265280 (1965).Google Scholar
14.Beyster, J. R., Nucl. Sci. Eng. 31, 254271 (1968).CrossRefGoogle Scholar
15.Granada, J. R., Phys. Rev. B 31, 41674177 (1985).Google Scholar
16.Inoue, K., Ishikawa, Y., Watanabe, N., Kaji, K., Kiyanagi, Y., Iwasa, H., and Kohgi, M., Nucl. Instrum. Methods A238, 401410 (1985).CrossRefGoogle Scholar
17.Debye, P. and Bueche, A. M., J. Appl. Phys. 20, 518525 (1949).Google Scholar
18.Noda, T., Inagaki, M., and Yamada, S., J. Non-Cryst. Solids. 1, 285302 (1969).CrossRefGoogle Scholar
19.Höhr, A., Neumann, H-B., Schmidt, P. W., Pfeifer, P., and Avnir, D., Phys. Rev. B. 38, 14621467 (1988).Google Scholar
20.Debye, P., Anderson, H. R. Jr., and Brumberger, H., J. Appl. Phys. 28, 679683 (1957).Google Scholar
21.Klug, H. and Alexander, L., X-ray Diffraction Procedures (John Wiley and Sons, New York, 1954), pp. 491538.Google Scholar
22.Kodera, S., Minami, N., and Ino, T., Jpn. J. Appl. Phys. 25, 328335 (1986).CrossRefGoogle Scholar
23.Misawa, M., Price, D. L., and Suzuki, K., J. Non-Cryst. Solids 37, 8597 (1980).CrossRefGoogle Scholar
24.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley, New York, 1976), pp. 808811.Google Scholar
25.Sawyer, L. C., Jamieson, M., Brikowski, D., Haider, M. I., and Chen, R. T., J. Am. Ceram. Soc. 70, 798810 (1987).Google Scholar
26.Shimoo, T., Chen, H., and Okamura, K., J. Ceram. Soc. Jpn. 100, 4853 (1992).CrossRefGoogle Scholar
27.Okamura, K., Sato, M., Seguchi, T., and Kawanishi, S., in Controlled Interphases in Composite Materials, Proceedings of the 3rd International Conference on Composite Interfaces-ICCI-III, Cleveland, OH, May, 1990, edited by Ishida, H. (Elsevier, New York, 1990), pp. 209218.Google Scholar