Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:31:24.176Z Has data issue: false hasContentIssue false

Metal-organic deposition of thin-film yttria-stabilized zirconia-titania

Published online by Cambridge University Press:  31 January 2011

Karen E. Swider
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Wayne L. Worrell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

Mixed-conducting yttria-stabilized zirconia-titania (YZTi) has attractive applications in solid oxide fuel cells (SOFC's) and electrocatalysis, particularly when used as a thin film to reduce its electrical resistance. Thin films of yttria (12 mol %) stabilized zirconia-titania (8 mol %) have been prepared using metal-organic deposition (MOD) whereby metal-organic solutions of Zr-, Y-, and Ti-2-ethylhexanoates are spun onto suitable substrates. Variables affecting the film surface-morphology, chemistry, and crystal structure are examined using scanning electron microscopy (SEM), auger electron spectroscopy (AES), and x-ray diffraction (XRD), respectively. Uniform, pore-free films having a low carbon content (<1 at. %) are made by sintering on a hot plate at 530 °C. The effect of thermal cycling on the chemical compatibility and adherence is examined for YZTi films on yttria-stabilized zirconia substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liou, S. S. and Worrell, W. L., Appl. Phys. A 49, 25 (1989).Google Scholar
2.Liou, S. S. and Worrell, W. L., in Solid Oxide Fuel Cells, edited by Singhal, S. C. (Electrochem. Soc. First Int. Symp. Proc. 89–11, Pennington, NJ, 1989), p. 81.Google Scholar
3.Swider, K. E. and Worrell, W. L., unpublished research.Google Scholar
4.Swider, K. E., Ph.D. Thesis, Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA (1992).Google Scholar
5.Etsell, T. H. and Flengas, S. N., Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
6.Worrell, W. L., Solid State Ionics 2830, 1215 (1988).CrossRefGoogle Scholar
7.Minh, N. Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
8.Mantese, J. V., Micheli, A. L., Hamdi, A. H., and Vest, R. W., MRS Bull. 10, 48 (1989).CrossRefGoogle Scholar
9.Vest, R. W., Ferroelectrics 102, 53 (1990).CrossRefGoogle Scholar
10.Vest, R. W. and Xu, J., IEEE Trans. Ultrason. Ferroelectrics Freq. Control 35, 711 (1988).CrossRefGoogle Scholar
11.Xu, J. J., Shaikh, A. S., and Vest, R. W., Thin Solid Films 161, 273 (1988).CrossRefGoogle Scholar
12.Chen, Y. L., Mantese, J. V., Hamdi, A. H., and Micheli, A. L., J. Mater. Res. 4, 1065 (1989).CrossRefGoogle Scholar
13.Livage, J., Sanchez, C., and Henry, M., Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
14.Hoverstreydt, E., J. Appl. Crystallogr. 16, 651 (1983).CrossRefGoogle Scholar
15.Stubican, V. S., Hink, R. S., and Ray, S. P., J. Am. Ceram. Soc. 61, 17 (1978).CrossRefGoogle Scholar
16.Thiele, E. S., Wang, L-S., Mason, T. O., and Barnett, S. A., J. Vac. Sci. Technol. A 9, 3054 (1991).CrossRefGoogle Scholar
17.Meschter, P. J. and Worrell, W. L., Metall. Trans. A 7A, 299 (1976).CrossRefGoogle Scholar